Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3920 Publications

Showing 1421-1430 of 3920 results
Card Lab
06/21/17 | Feature integration drives probabilistic behavior in the Drosophila escape response.
von Reyn CR, Nern A, Williamson WR, Breads P, Wu M, Namiki S, Card GM
Neuron. 2017 Jun 21;94(6):1190-204. doi: 10.1016/j.neuron.2017.05.036

Animals rely on dedicated sensory circuits to extract and encode environmental features. How individual neurons integrate and translate these features into behavioral responses remains a major question. Here, we identify a visual projection neuron type that conveys predator approach information to the Drosophila giant fiber (GF) escape circuit. Genetic removal of this input during looming stimuli reveals that it encodes angular expansion velocity, whereas other input cell type(s) encode angular size. Motor program selection and timing emerge from linear integration of these two features within the GF. Linear integration improves size detection invariance over prior models and appropriately biases motor selection to rapid, GF-mediated escapes during fast looms. Our findings suggest feature integration, and motor control may occur as simultaneous operations within the same neuron and establish the Drosophila escape circuit as a model system in which these computations may be further dissected at the circuit level.

View Publication Page
08/01/05 | Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy.
Peng H, Long F, Ding C
IEEE Transactions on Pattern Analysis and Machine Intelligence. 2005 Aug;27(8):1226-38. doi: 10.1007/s12021-010-9090-x

Feature selection is an important problem for pattern classification systems. We study how to select good features according to the maximal statistical dependency criterion based on mutual information. Because of the difficulty in directly implementing the maximal dependency condition, we first derive an equivalent form, called minimal-redundancy-maximal-relevance criterion (mRMR), for first-order incremental feature selection. Then, we present a two-stage feature selection algorithm by combining mRMR and other more sophisticated feature selectors (e.g., wrappers). This allows us to select a compact set of superior features at very low cost. We perform extensive experimental comparison of our algorithm and other methods using three different classifiers (naive Bayes, support vector machine, and linear discriminate analysis) and four different data sets (handwritten digits, arrhythmia, NCI cancer cell lines, and lymphoma tissues). The results confirm that mRMR leads to promising improvement on feature selection and classification accuracy.

View Publication Page
05/28/15 | Female mice ultrasonically interact with males during courtship displays.
Neunuebel JP, Taylor AL, Arthur BJ, Egnor SR
eLife. 2015 May 28;4:e06203. doi: 10.7554/eLife.06203

During courtship males attract females with elaborate behaviors. In mice, these displays include ultrasonic vocalizations. Ultrasonic courtship vocalizations were previously attributed to the courting male, despite evidence that both sexes produce virtually indistinguishable vocalizations. Because of this similarity, and the difficulty of assigning vocalizations to individuals, the vocal contribution of each individual during courtship is unknown. To address this question, we developed a microphone array system to localize vocalizations from socially interacting, individual adult mice. With this system, we show that female mice vocally interact with males during courtship. Males and females jointly increased their vocalization rates during chases. Furthermore, a female's participation in these vocal interactions may function as a signal that indicates a state of increased receptivity. Our results reveal a novel form of vocal communication during mouse courtship, and lay the groundwork for a mechanistic dissection of communication during social behavior.

View Publication Page
07/18/17 | Fibroblast growth factor signaling instructs ensheathing glia wrapping of olfactory glomeruli.
Wu B, Li J, Chou Y, Luginbuhl D, Luo L
Proc Natl Acad Sci U S A. 07/2017;114(29):7505-7512. doi: 10.1073/pnas.1706533114

The formation of complex but highly organized neural circuits requires interactions between neurons and glia. During the assembly of the olfactory circuit, 50 olfactory receptor neuron (ORN) classes and 50 projection neuron (PN) classes form synaptic connections in 50 glomerular compartments in the antennal lobe, each of which represents a discrete olfactory information-processing channel. Each compartment is separated from the adjacent compartments by membranous processes from ensheathing glia. Here we show that Thisbe, an FGF released from olfactory neurons, particularly from local interneurons, instructs ensheathing glia to wrap each glomerulus. The Heartless FGF receptor acts cell-autonomously in ensheathing glia to regulate process extension so as to insulate each neuropil compartment. Overexpressing Thisbe in ORNs or PNs causes overwrapping of the glomeruli their axons or dendrites target. Failure to establish the FGF-dependent glia structure disrupts precise ORN axon targeting and discrete glomerular formation.

View Publication Page
Cardona LabSaalfeld Lab
07/01/12 | Fiji: an open-source platform for biological-image analysis.
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A
Nature Methods. 2012 Jul;9(7):676-82. doi: 10.1038/nmeth.2019

Fiji is a distribution of the popular open-source software ImageJ focused on biological-image analysis. Fiji uses modern software engineering practices to combine powerful software libraries with a broad range of scripting languages to enable rapid prototyping of image-processing algorithms. Fiji facilitates the transformation of new algorithms into ImageJ plugins that can be shared with end users through an integrated update system. We propose Fiji as a platform for productive collaboration between computer science and biology research communities.

View Publication Page
Looger Lab
10/29/10 | Filtering of visual information in the tectum by an identified neural circuit.
Del Bene F, Wyart C, Robles E, Tran A, Looger L, Scott EK, Isacoff EY, Baier H
Science. 2010 Oct 29;330(6004):669-73. doi: 10.1126/science.1192949

The optic tectum of zebrafish is involved in behavioral responses that require the detection of small objects. The superficial layers of the tectal neuropil receive input from retinal axons, while its deeper layers convey the processed information to premotor areas. Imaging with a genetically encoded calcium indicator revealed that the deep layers, as well as the dendrites of single tectal neurons, are preferentially activated by small visual stimuli. This spatial filtering relies on GABAergic interneurons (using the neurotransmitter γ-aminobutyric acid) that are located in the superficial input layer and respond only to large visual stimuli. Photo-ablation of these cells with KillerRed, or silencing of their synaptic transmission, eliminates the size tuning of deeper layers and impairs the capture of prey.

View Publication Page
02/16/23 | Finding the right type of cell.
Scheffer LK
eLife. 2023 Feb 16;12:. doi: 10.7554/eLife.86172

A new method allows researchers to automatically assign cells into different cell types and tissues, a step which is critical for understanding complex organisms.

View Publication Page
Looger Lab
07/01/13 | Fine time-course expression analysis identifies cascades of activation and repression and maps a regulator of mammalian sex determination.
Munger SC, Natarajan A, Looger LL, Ohler U, Capel B
PLoS Genetics. 2013 Jul;9(7):e1003630. doi: 10.1371/journal.pgen.1003630

In vertebrates, primary sex determination refers to the decision within a bipotential organ precursor to differentiate as a testis or ovary. Bifurcation of organ fate begins between embryonic day (E) 11.0–E12.0 in mice and likely involves a dynamic transcription network that is poorly understood. To elucidate the first steps of sexual fate specification, we profiled the XX and XY gonad transcriptomes at fine granularity during this period and resolved cascades of gene activation and repression. C57BL/6J (B6) XY gonads showed a consistent  5-hour delay in the activation of most male pathway genes and repression of female pathway genes relative to 129S1/SvImJ, which likely explains the sensitivity of the B6 strain to male-to-female sex reversal. Using this fine time course data, we predicted novel regulatory genes underlying expression QTLs (eQTLs) mapped in a previous study. To test predictions, we developed an in vitro gonad primary cell assay and optimized a lentivirus-based shRNA delivery method to silence candidate genes and quantify effects on putative targets. We provide strong evidence that Lmo4 (Lim-domain only 4) is a novel regulator of sex determination upstream of SF1 (Nr5a1), Sox9, Fgf9, and Col9a3. This approach can be readily applied to identify regulatory interactions in other systems.

View Publication Page
10/01/09 | Fine-tuning of secondary arbor development: the effects of the ecdysone receptor on the adult neuronal lineages of the Drosophila thoracic CNS.
Brown HL, Truman JW
Development. 2009 Oct;136(19):3247-56. doi: 10.1242/dev.039859

The adult central nervous system (CNS) of Drosophila is largely composed of relatively homogenous neuronal classes born during larval life. These adult-specific neuron lineages send out initial projections and then arrest development until metamorphosis, when intense sprouting occurs to establish the massive synaptic connections necessary for the behavior and function of the adult fly. In this study, we identified and characterized specific lineages in the adult CNS and described their secondary branch patterns. Because prior studies show that the outgrowth of incumbent remodeling neurons in the CNS is highly dependent on the ecdysone pathway, we investigated the role of ecdysone in the development of the adult-specific neuronal lineages using a dominant-negative construct of the ecdysone receptor (EcR-DN). When EcR-DN was expressed in clones of the adult-specific lineages, neuroblasts persisted longer, but we saw no alteration in the initial projections of the lineages. Defects were observed in secondary arbors of adult neurons, including clumping and cohesion of fine branches, misrouting, smaller arbors and some defasciculation. The defects varied across the multiple neuron lineages in both appearance and severity. These results indicate that the ecdysone receptor complex influences the fine-tuning of connectivity between neuronal circuits, in conjunction with other factors driving outgrowth and synaptic partnering.

View Publication Page
09/01/23 | FIOLA: an accelerated pipeline for fluorescence imaging online analysis.
Cai C, Dong C, Friedrich J, Rozsa M, Pnevmatikakis EA, Giovannucci A
Nature Methods. 2023 Sep 01;20(9):1417-1425. doi: 10.1038/s41592-023-01964-2

Optical microscopy methods such as calcium and voltage imaging enable fast activity readout of large neuronal populations using light. However, the lack of corresponding advances in online algorithms has slowed progress in retrieving information about neural activity during or shortly after an experiment. This gap not only prevents the execution of real-time closed-loop experiments, but also hampers fast experiment-analysis-theory turnover for high-throughput imaging modalities. Reliable extraction of neural activity from fluorescence imaging frames at speeds compatible with indicator dynamics and imaging modalities poses a challenge. We therefore developed FIOLA, a framework for fluorescence imaging online analysis that extracts neuronal activity from calcium and voltage imaging movies at speeds one order of magnitude faster than state-of-the-art methods. FIOLA exploits algorithms optimized for parallel processing on GPUs and CPUs. We demonstrate reliable and scalable performance of FIOLA on both simulated and real calcium and voltage imaging datasets. Finally, we present an online experimental scenario to provide guidance in setting FIOLA parameters and to highlight the trade-offs of our approach.

View Publication Page