Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

4185 Publications

Showing 1771-1780 of 4185 results
05/13/21 | High-precision coding in visual cortex.
Stringer C, Michaelos M, Tsyboulski D, Lindo SE, Pachitariu M
Cell. 2021 May 13;184(10):2767-78. doi: 10.1016/j.cell.2021.03.042

Individual neurons in visual cortex provide the brain with unreliable estimates of visual features. It is not known whether the single-neuron variability is correlated across large neural populations, thus impairing the global encoding of stimuli. We recorded simultaneously from up to 50,000 neurons in mouse primary visual cortex (V1) and in higher order visual areas and measured stimulus discrimination thresholds of 0.35° and 0.37°, respectively, in an orientation decoding task. These neural thresholds were almost 100 times smaller than the behavioral discrimination thresholds reported in mice. This discrepancy could not be explained by stimulus properties or arousal states. Furthermore, behavioral variability during a sensory discrimination task could not be explained by neural variability in V1. Instead, behavior-related neural activity arose dynamically across a network of non-sensory brain areas. These results imply that perceptual discrimination in mice is limited by downstream decoders, not by neural noise in sensory representations.

View Publication Page
12/15/02 | High-resolution analysis of ethanol-induced locomotor stimulation in Drosophila.
Wolf FW, Rodan AR, Tsai LT, Heberlein U
The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2002 Dec 15;22(24):11035-44

Understanding how ethanol influences behavior is key to deciphering the mechanisms of ethanol action and alcoholism. In mammals, low doses of ethanol stimulate locomotion, whereas high doses depress it. The acute stimulant effect of ethanol has been proposed to be a manifestation of its rewarding effects. In Drosophila, ethanol exposure transiently potentiates locomotor activity in a biphasic dose- and time-dependent manner. An initial short-lived peak of activity corresponds to an olfactory response to ethanol. A second, longer-lasting period of increased activity coincides with rising internal ethanol concentrations; these closely parallel concentrations that stimulate locomotion in mammals. High-resolution analysis of the walking pattern of individual flies revealed that locomotion consists of bouts of activity; bout structure can be quantified by bout frequency, bout length, and the time spent walking at high speeds. Ethanol exposure induces both dramatic and dynamic changes in bout structure. Mutants with increased ethanol sensitivity show distinct changes in ethanol-induced locomotor behavior, as well as genotype-specific changes in activity bout structure. Thus, the overall effect of ethanol on locomotor behavior in Drosophila is caused by changes in discrete quantifiable parameters of walking pattern. The effects of ethanol on locomotion are comparable in flies and mammals, suggesting that Drosophila is a suitable model system to study the underlying mechanisms.

View Publication Page
Grigorieff Lab
06/25/19 | High-resolution cryo-EM structures of outbreak strain human norovirus shells reveal size variations.
Jung J, Grant T, Thomas DR, Diehnelt CW, Grigorieff N, Leemor J
Proceedings of the National Academy of Sciences of the United States of America. 2019 Jun 25;116(26):12828-32. doi: 10.1073/pnas.1903562116

Noroviruses are a leading cause of foodborne illnesses worldwide. Although GII.4 strains have been responsible for most norovirus outbreaks, the assembled virus shell structures have been available in detail for only a single strain (GI.1). We present high-resolution (2.6- to 4.1-Å) cryoelectron microscopy (cryo-EM) structures of GII.4, GII.2, GI.7, and GI.1 human norovirus outbreak strain virus-like particles (VLPs). Although norovirus VLPs have been thought to exist in a single-sized assembly, our structures reveal polymorphism between and within genogroups, with small, medium, and large particle sizes observed. Using asymmetric reconstruction, we were able to resolve a Zn2+ metal ion adjacent to the coreceptor binding site, which affected the structural stability of the shell. Our structures serve as valuable templates for facilitating vaccine formulations.

View Publication Page
05/28/25 | High-resolution imaging of RNA and proteins in thick tissues using cycleHCR.
Kim J, Liu ZJ
Nat Rev Genet. 2025 May 28:. doi: 10.1038/s41576-025-00860-z
06/27/19 | High-resolution imaging reveals how the spindle midzone impacts chromosome movement.
Pamula MC, Carlini L, Forth S, Verma P, Suresh S, Legant WR, Khodjakov A, Betzig E, Kapoor TM
The Journal of Cell Biology. 27 Jun 2019;218(8):2529-44. doi: 10.1083/jcb.201904169

In the spindle midzone, microtubules from opposite half-spindles form bundles between segregating chromosomes. Microtubule bundles can either push or restrict chromosome movement during anaphase in different cellular contexts, but how these activities are achieved remains poorly understood. Here, we use high-resolution live-cell imaging to analyze individual microtubule bundles, growing filaments, and chromosome movement in dividing human cells. Within bundles, filament overlap length marked by the cross-linking protein PRC1 decreases during anaphase as chromosome segregation slows. Filament ends within microtubule bundles appear capped despite dynamic PRC1 turnover and submicrometer proximity to growing microtubules. Chromosome segregation distance and rate are increased in two human cell lines when microtubule bundle assembly is prevented via PRC1 knockdown. Upon expressing a mutant PRC1 with reduced microtubule affinity, bundles assemble but chromosome hypersegregation is still observed. We propose that microtubule overlap length reduction, typically linked to pushing forces generated within filament bundles, is needed to properly restrict spindle elongation and position chromosomes within daughter cells.

View Publication Page
Cui Lab
07/13/15 | High-resolution in vivo imaging of mouse brain through the intact skull.
Park J, Sun W, Cui M
Proceedings of the National Academy of Sciences of the United States of America. 2015-Jul 13;112(30):9236-41. doi: 10.1073/pnas.1505939112

Multiphoton microscopy is the current method of choice for in vivo deep-tissue imaging. The long laser wavelength suffers less scattering, and the 3D-confined excitation permits the use of scattered signal light. However, the imaging depth is still limited because of the complex refractive index distribution of biological tissue, which scrambles the incident light and destroys the optical focus needed for high resolution imaging. Here, we demonstrate a wavefront-shaping scheme that allows clear imaging through extremely turbid biological tissue, such as the skull, over an extended corrected field of view (FOV). The complex wavefront correction is obtained and directly conjugated to the turbid layer in a noninvasive manner. Using this technique, we demonstrate in vivo submicron-resolution imaging of neural dendrites and microglia dynamics through the intact skulls of adult mice. This is the first observation, to our knowledge, of dynamic morphological changes of microglia through the intact skull, allowing truly noninvasive studies of microglial immune activities free from external perturbations.

View Publication Page
06/01/15 | High-resolution live imaging reveals axon-glia interactions during peripheral nerve injury and repair in zebrafish.
Xiao Y, Faucherre A, Pola-Morell L, Heddleston JM, Liu T, Chew T, Sato F, Sehara-Fujisawa A, Kawakami K, López-Schier H
Disease Models & Mechanisms. 2015 Jun 1;8(6):553-64. doi: 10.1242/dmm.018184

Neural damage is a devastating outcome of physical trauma. The glia are one of the main effectors of neuronal repair in the nervous system, but the dynamic interactions between peripheral neurons and Schwann cells during injury and regeneration remain incompletely characterized. Here, we combine laser microsurgery, genetic analysis, high-resolution intravital imaging and lattice light-sheet microscopy to study the interaction between Schwann cells and sensory neurons in a zebrafish model of neurotrauma. We found that chronic denervation by neuronal ablation leads to Schwann-cell death, whereas acute denervation by axonal severing does not affect the overall complexity and architecture of the glia. Neuronal-circuit regeneration begins when Schwann cells extend bridging processes to close the injury gap. Regenerating axons grow faster and directionally after the physiological clearing of distal debris by the Schwann cells. This might facilitate circuit repair by ensuring that axons are guided through unoccupied spaces within bands of Büngner towards their original peripheral target. Accordingly, in the absence of Schwann cells, regenerating axons are misrouted, impairing the re-innervation of sensory organs. Our results indicate that regenerating axons use haptotaxis as a directional cue during the reconstitution of a neural circuit. These findings have implications for therapies aimed at neurorepair, which will benefit from preserving the architecture of the peripheral glia during periods of denervation.

View Publication Page
Gonen Lab
06/16/16 | High-resolution macromolecular structure determination by MicroED, a cryo-EM method.
Rodriguez JA, Gonen T
Methods in Enzymology. 2016 Jun 16:. doi: 10.1016/bs.mie.2016.04.017

Microelectron diffraction (MicroED) is a new cryo-electron microscopy (cryo-EM) method capable of determining macromolecular structures at atomic resolution from vanishingly small 3D crystals. MicroED promises to solve atomic resolution structures from even the tiniest of crystals, less than a few hundred nanometers thick. MicroED complements frontier advances in crystallography and represents part of the rebirth of cryo-EM that is making macromolecular structure determination more accessible for all. Here we review the concept and practice of MicroED, for both the electron microscopist and crystallographer. Where other reviews have addressed specific details of the technique (Hattne et al., 2015Shi et al., 2016 and Shi et al., 2013), we aim to provide context and highlight important features that should be considered when performing a MicroED experiment.

View Publication Page
05/01/06 | High-resolution quantitative trait locus mapping reveals sign epistasis controlling ovariole number between two Drosophila species.
Orgogozo V, Broman KW, Stern DL
Genetics. 2006 May;173(1):197-205. doi: 10.1534/genetics.105.054098

Identifying the genes underlying genetically complex traits is of fundamental importance for medicine, agriculture, and evolutionary biology. However, the level of resolution offered by traditional quantitative trait locus (QTL) mapping is usually coarse. We analyze here a trait closely related to fitness, ovariole number. Our initial interspecific mapping between Drosophila sechellia (8 ovarioles/ovary) and D. simulans (15 ovarioles/ovary) identified a major QTL on chromosome 3 and a minor QTL on chromosome 2. To refine the position of the major QTL, we selected 1038 additional recombinants in the region of interest using flanking morphological markers (selective phenotyping). This effort generated approximately one recombination event per gene and increased the mapping resolution by approximately seven times. Our study thus shows that using visible markers to select for recombinants can efficiently increase the resolution of QTL mapping. We resolved the major QTL into two epistatic QTL, QTL3a and QTL3b. QTL3a shows sign epistasis: it has opposite effects in two different genetic backgrounds, the presence vs. the absence of the QTL3b D. sechellia allele. This property of QTL3a allows us to reconstruct the probable order of fixation of the QTL alleles during evolution.

View Publication Page
Gonen Lab
09/01/14 | High-resolution structure determination by continuous-rotation data collection in MicroED.
Nannenga BL, Shi D, Leslie AG, Gonen T
Nature Methods. 2014 Sep;11(9):927-30. doi: 10.1038/nmeth.3043

MicroED uses very small three-dimensional protein crystals and electron diffraction for structure determination. We present an improved data collection protocol for MicroED called 'continuous rotation'. Microcrystals are continuously rotated during data collection, yielding more accurate data. The method enables data processing with the crystallographic software tool MOSFLM, which resulted in improved resolution for the model protein lysozyme. These improvements are paving the way for the broad implementation and application of MicroED in structural biology.

View Publication Page