Filter
Associated Lab
- Aguilera Castrejon Lab (16) Apply Aguilera Castrejon Lab filter
- Ahrens Lab (64) Apply Ahrens Lab filter
- Aso Lab (40) Apply Aso Lab filter
- Baker Lab (38) Apply Baker Lab filter
- Betzig Lab (113) Apply Betzig Lab filter
- Beyene Lab (13) Apply Beyene Lab filter
- Bock Lab (17) Apply Bock Lab filter
- Branson Lab (53) Apply Branson Lab filter
- Card Lab (42) Apply Card Lab filter
- Cardona Lab (64) Apply Cardona Lab filter
- Chklovskii Lab (13) Apply Chklovskii Lab filter
- Clapham Lab (15) Apply Clapham Lab filter
- Cui Lab (19) Apply Cui Lab filter
- Darshan Lab (12) Apply Darshan Lab filter
- Dennis Lab (1) Apply Dennis Lab filter
- Dickson Lab (46) Apply Dickson Lab filter
- Druckmann Lab (25) Apply Druckmann Lab filter
- Dudman Lab (50) Apply Dudman Lab filter
- Eddy/Rivas Lab (30) Apply Eddy/Rivas Lab filter
- Egnor Lab (11) Apply Egnor Lab filter
- Espinosa Medina Lab (19) Apply Espinosa Medina Lab filter
- Feliciano Lab (7) Apply Feliciano Lab filter
- Fetter Lab (41) Apply Fetter Lab filter
- Fitzgerald Lab (29) Apply Fitzgerald Lab filter
- Freeman Lab (15) Apply Freeman Lab filter
- Funke Lab (38) Apply Funke Lab filter
- Gonen Lab (91) Apply Gonen Lab filter
- Grigorieff Lab (62) Apply Grigorieff Lab filter
- Harris Lab (63) Apply Harris Lab filter
- Heberlein Lab (94) Apply Heberlein Lab filter
- Hermundstad Lab (26) Apply Hermundstad Lab filter
- Hess Lab (77) Apply Hess Lab filter
- Ilanges Lab (2) Apply Ilanges Lab filter
- Jayaraman Lab (46) Apply Jayaraman Lab filter
- Ji Lab (33) Apply Ji Lab filter
- Johnson Lab (6) Apply Johnson Lab filter
- Kainmueller Lab (19) Apply Kainmueller Lab filter
- Karpova Lab (14) Apply Karpova Lab filter
- Keleman Lab (13) Apply Keleman Lab filter
- Keller Lab (76) Apply Keller Lab filter
- Koay Lab (18) Apply Koay Lab filter
- Lavis Lab (149) Apply Lavis Lab filter
- Lee (Albert) Lab (34) Apply Lee (Albert) Lab filter
- Leonardo Lab (23) Apply Leonardo Lab filter
- Li Lab (28) Apply Li Lab filter
- Lippincott-Schwartz Lab (169) Apply Lippincott-Schwartz Lab filter
- Liu (Yin) Lab (6) Apply Liu (Yin) Lab filter
- Liu (Zhe) Lab (63) Apply Liu (Zhe) Lab filter
- Looger Lab (138) Apply Looger Lab filter
- Magee Lab (49) Apply Magee Lab filter
- Menon Lab (18) Apply Menon Lab filter
- Murphy Lab (13) Apply Murphy Lab filter
- O'Shea Lab (7) Apply O'Shea Lab filter
- Otopalik Lab (13) Apply Otopalik Lab filter
- Pachitariu Lab (48) Apply Pachitariu Lab filter
- Pastalkova Lab (18) Apply Pastalkova Lab filter
- Pavlopoulos Lab (19) Apply Pavlopoulos Lab filter
- Pedram Lab (15) Apply Pedram Lab filter
- Podgorski Lab (16) Apply Podgorski Lab filter
- Reiser Lab (51) Apply Reiser Lab filter
- Riddiford Lab (44) Apply Riddiford Lab filter
- Romani Lab (43) Apply Romani Lab filter
- Rubin Lab (143) Apply Rubin Lab filter
- Saalfeld Lab (63) Apply Saalfeld Lab filter
- Satou Lab (16) Apply Satou Lab filter
- Scheffer Lab (36) Apply Scheffer Lab filter
- Schreiter Lab (67) Apply Schreiter Lab filter
- Sgro Lab (21) Apply Sgro Lab filter
- Shroff Lab (31) Apply Shroff Lab filter
- Simpson Lab (23) Apply Simpson Lab filter
- Singer Lab (80) Apply Singer Lab filter
- Spruston Lab (93) Apply Spruston Lab filter
- Stern Lab (156) Apply Stern Lab filter
- Sternson Lab (54) Apply Sternson Lab filter
- Stringer Lab (35) Apply Stringer Lab filter
- Svoboda Lab (135) Apply Svoboda Lab filter
- Tebo Lab (33) Apply Tebo Lab filter
- Tervo Lab (9) Apply Tervo Lab filter
- Tillberg Lab (21) Apply Tillberg Lab filter
- Tjian Lab (64) Apply Tjian Lab filter
- Truman Lab (88) Apply Truman Lab filter
- Turaga Lab (51) Apply Turaga Lab filter
- Turner Lab (38) Apply Turner Lab filter
- Vale Lab (7) Apply Vale Lab filter
- Voigts Lab (3) Apply Voigts Lab filter
- Wang (Meng) Lab (21) Apply Wang (Meng) Lab filter
- Wang (Shaohe) Lab (25) Apply Wang (Shaohe) Lab filter
- Wu Lab (9) Apply Wu Lab filter
- Zlatic Lab (28) Apply Zlatic Lab filter
- Zuker Lab (25) Apply Zuker Lab filter
Associated Project Team
- CellMap (12) Apply CellMap filter
- COSEM (3) Apply COSEM filter
- FIB-SEM Technology (3) Apply FIB-SEM Technology filter
- Fly Descending Interneuron (11) Apply Fly Descending Interneuron filter
- Fly Functional Connectome (14) Apply Fly Functional Connectome filter
- Fly Olympiad (5) Apply Fly Olympiad filter
- FlyEM (53) Apply FlyEM filter
- FlyLight (49) Apply FlyLight filter
- GENIE (46) Apply GENIE filter
- Integrative Imaging (4) Apply Integrative Imaging filter
- Larval Olympiad (2) Apply Larval Olympiad filter
- MouseLight (18) Apply MouseLight filter
- NeuroSeq (1) Apply NeuroSeq filter
- ThalamoSeq (1) Apply ThalamoSeq filter
- Tool Translation Team (T3) (26) Apply Tool Translation Team (T3) filter
- Transcription Imaging (49) Apply Transcription Imaging filter
Publication Date
- 2025 (124) Apply 2025 filter
- 2024 (216) Apply 2024 filter
- 2023 (160) Apply 2023 filter
- 2022 (193) Apply 2022 filter
- 2021 (194) Apply 2021 filter
- 2020 (196) Apply 2020 filter
- 2019 (202) Apply 2019 filter
- 2018 (232) Apply 2018 filter
- 2017 (217) Apply 2017 filter
- 2016 (209) Apply 2016 filter
- 2015 (252) Apply 2015 filter
- 2014 (236) Apply 2014 filter
- 2013 (194) Apply 2013 filter
- 2012 (190) Apply 2012 filter
- 2011 (190) Apply 2011 filter
- 2010 (161) Apply 2010 filter
- 2009 (158) Apply 2009 filter
- 2008 (140) Apply 2008 filter
- 2007 (106) Apply 2007 filter
- 2006 (92) Apply 2006 filter
- 2005 (67) Apply 2005 filter
- 2004 (57) Apply 2004 filter
- 2003 (58) Apply 2003 filter
- 2002 (39) Apply 2002 filter
- 2001 (28) Apply 2001 filter
- 2000 (29) Apply 2000 filter
- 1999 (14) Apply 1999 filter
- 1998 (18) Apply 1998 filter
- 1997 (16) Apply 1997 filter
- 1996 (10) Apply 1996 filter
- 1995 (18) Apply 1995 filter
- 1994 (12) Apply 1994 filter
- 1993 (10) Apply 1993 filter
- 1992 (6) Apply 1992 filter
- 1991 (11) Apply 1991 filter
- 1990 (11) Apply 1990 filter
- 1989 (6) Apply 1989 filter
- 1988 (1) Apply 1988 filter
- 1987 (7) Apply 1987 filter
- 1986 (4) Apply 1986 filter
- 1985 (5) Apply 1985 filter
- 1984 (2) Apply 1984 filter
- 1983 (2) Apply 1983 filter
- 1982 (3) Apply 1982 filter
- 1981 (3) Apply 1981 filter
- 1980 (1) Apply 1980 filter
- 1979 (1) Apply 1979 filter
- 1976 (2) Apply 1976 filter
- 1973 (1) Apply 1973 filter
- 1970 (1) Apply 1970 filter
- 1967 (1) Apply 1967 filter
Type of Publication
4106 Publications
Showing 221-230 of 4106 resultsChronic stress could induce severe cognitive impairments. Despite extensive investigations in mammalian models, the underlying mechanisms remain obscure. Here, we show that chronic stress could induce dramatic learning and memory deficits in The chronic stress-induced learning deficit (CSLD) is long lasting and associated with other depression-like behaviors. We demonstrated that excessive dopaminergic activity provokes susceptibility to CSLD. Remarkably, a pair of PPL1-γ1pedc dopaminergic neurons that project to the mushroom body (MB) γ1pedc compartment play a key role in regulating susceptibility to CSLD so that stress-induced PPL1-γ1pedc hyperactivity facilitates the development of CSLD. Consistently, the mushroom body output neurons (MBON) of the γ1pedc compartment, MBON-γ1pedc>α/β neurons, are important for modulating susceptibility to CSLD. Imaging studies showed that dopaminergic activity is necessary to provoke the development of chronic stress-induced maladaptations in the MB network. Together, our data support that PPL1-γ1pedc mediates chronic stress signals to drive allostatic maladaptations in the MB network that lead to CSLD.
Dopamine is a mediator of the stimulant properties of drugs of abuse, including ethanol, in mammals and in the fruit fly Drosophila. The neural substrates for the stimulant actions of ethanol in flies are not known. We show that a subset of dopamine neurons and their targets, through the action of the D1-like dopamine receptor DopR, promote locomotor activation in response to acute ethanol exposure. A bilateral pair of dopaminergic neurons in the fly brain mediates the enhanced locomotor activity induced by ethanol exposure, and promotes locomotion when directly activated. These neurons project to the central complex ellipsoid body, a structure implicated in regulating motor behaviors. Ellipsoid body neurons are required for ethanol-induced locomotor activity and they express DopR. Elimination of DopR blunts the locomotor activating effects of ethanol, and this behavior can be restored by selective expression of DopR in the ellipsoid body. These data tie the activity of defined dopamine neurons to D1-like DopR-expressing neurons to form a neural circuit that governs acute responding to ethanol.
The importance of auditory feedback in the development of spoken language in humans is striking. Paradoxically, although auditory-feedback-dependent vocal plasticity has been shown in a variety of taxonomic groups, there is little evidence that our nearest relatives–non-human primates–require auditory feedback for the development of species-typical vocal signals. Because of the apparent lack of developmental plasticity in the vocal production system, neuroscientists have largely ignored the neural mechanisms of non-human primate vocal production and perception. Recently, the absence of evidence for vocal plasticity from developmental studies has been contrasted with evidence for vocal plasticity in adults. We argue that this new evidence makes non-human primate vocal behavior an attractive model system for neurobiological analysis.
Cysteine proteases of the Clan CA (papain) family are the predominant protease group in primitive invertebrates. Cysteine protease inhibitors arrest infection by the protozoan parasite, Trypanosoma brucei. RNA interference studies implicated a cathepsin B-like protease, tbcatB, as a key inhibitor target. Utilizing parasites in which one of the two alleles of tbcatb has been deleted, the key role of this protease in degradation of endocytosed host proteins is delineated. TbcatB deficiency results in a decreased growth rate and dysmorphism of the flagellar pocket and the subjacent endocytic compartment. Western blot and microscopic analysis indicate that deficiency in tbcatB results in accumulation of both host and parasite proteins, including the lysosomal marker p67. A critical function for parasitism is the degradation of host transferrin, which is necessary for iron acquisition. Substrate specificity analysis of recombinant tbcatB revealed the optimal peptide cleavage sequences for the enzyme and these were confirmed experimentally using FRET-based substrates. Degradation of transferrin was validated by SDS-PAGE and the specific cleavage sites identified by N-terminal sequencing. Because even a modest deficiency in tbcatB is lethal for the parasite, tbcatB is a logical target for the development of new anti-trypanosomal chemotherapy.
The pea aphid, Acyrthosiphon pisum, exhibits several environmentally cued, discrete, alternate phenotypes (polyphenisms) during its life cycle. In the case of the reproductive polyphenism, differences in day length determine whether mothers will produce daughters that reproduce either sexually by laying fertilized eggs (oviparous sexual reproduction), or asexually by allowing oocytes to complete embryogenesis within the mother without fertilization (viviparous parthenogenesis). Oocytes and embryos that are produced asexually and develop within the mother develop more rapidly, are yolk-free, and much smaller than oocytes and embryos that are produced sexually. These overt differences suggest that there may be underlying differences in the molecular mechanisms of pattern formation. Indeed, our preliminary comparative gene expression work suggests that there are important differences in the terminal patterning system, involving the Torso pathway, between viviparous and oviparous development. We have so far examined the expression of homologs of torso-like and capicua, members of the Drosophila Torso pathway. We have detected clear differential expression of torso-like and possible differential expression of capicua. Establishing such differences in the expression of patterning genes between these developmental modes is a first step toward understanding how a single genome manages to direct patterning events in such different embryological contexts.
Critical features of the mitochondrial leading-strand DNA replication origin are conserved from Saccharomyces cerevisiae to humans. These include a promoter and a downstream GC-rich sequence block (CSBII) that encodes rGs within the primer RNA. During in vitro transcription at yeast mitochondrial replication origins, there is stable and persistent RNA-DNA hybrid formation that begins at the 5’ end of the rG region. The short rG-dC sequence is the necessary and sufficient nucleic acid element for establishing stable hybrids, and the presence of rGs within the RNA strand of the RNA-DNA hybrid is required. The efficiency of hybrid formation depends on the length of RNA synthesized 5’ to CSBII and the type of RNA polymerase employed. Once made, the RNA strand of an RNA-DNA hybrid can serve as an effective primer for mitochondrial DNA polymerase. These results reveal a new mechanism for persistent RNA-DNA hybrid formation and suggest a step in priming mitochondrial DNA replication that requires both mitochondrial RNA polymerase and an rG-dC sequence-specific event to form an extensive RNA-DNA hybrid.
The application of microscopy in biomedical research has come a long way since Antonie van Leeuwenhoek discovered unicellular organisms. Countless innovations have positioned light microscopy as a cornerstone of modern biology and a method of choice for connecting omics datasets to their biological and clinical correlates. Still, regardless of how convincing published imaging data looks, it does not always convey meaningful information about the conditions in which it was acquired, processed, and analyzed. Adequate record-keeping, reporting, and quality control are therefore essential to ensure experimental rigor and data fidelity, allow experiments to be reproducibly repeated, and promote the proper evaluation, interpretation, comparison, and re-use. To this end, microscopy images should be accompanied by complete descriptions detailing experimental procedures, biological samples, microscope hardware specifications, image acquisition parameters, and image analysis procedures, as well as metrics accounting for instrument performance and calibration. However, universal, community-accepted Microscopy Metadata standards and reporting specifications that would result in Findable Accessible Interoperable and Reproducible (FAIR) microscopy data have not yet been established. To understand this shortcoming and to propose a way forward, here we provide an overview of the nature of microscopy metadata and its importance for fostering data quality, reproducibility, scientific rigor, and sharing value in light microscopy. The proposal for tiered Microscopy Metadata Specifications that extend the OME Data Model put forth by the 4D Nucleome Initiative and by Bioimaging North America [1-3] as well as a suite of three complementary and interoperable tools are being developed to facilitate the process of image data documentation and are presented in related manuscripts [4-6].
Aphid soldiers, altruistic larvae that protect the colony from predators, are an example of highly social behaviour in an insect group with a natural history different from the eusocial Hymenoptera and Isoptera. Aphids therefore allow independent tests of theory developed to explain the evolution of eusociality. Although soldiers have been discovered in five tribes from two families, the number and pattern of origins and losses of soldiers is unknown due to a lack of phylogenetic data. Here I present a mtDNA based phylogeny for the Hormaphididae, and test the hypothesis that soldiers in the tribe Cerataphidini produced during two points in the life cycle represent independent origins. The results support this hypothesis. In addition, a minimum of five evolutionary events, either four origins and one loss or five origins, are required to explain the distribution of soldiers in the family. The positions of the origins and losses are well resolved, and this phylogeny provides an historical framework for studies on the causes of soldier aphid evolution.
We reanalysed Yang & Pattern's allozyme data, published in Auk in 1981, of Darwin's finches with a variety of distance and cladistic methods to estimate the phylogeny of the group. Different methods yielded different results, nevertheless there was widespread agreement among the distance methods on several groupings. First, the two species of Camarhynchus grouped near one another, but not always as a monophyletic group. Second, Cactospiza pallida and Platyspiza crassirostris formed a monophyletic group. Finally, all the methods (including parsimony) supported the monophyly of the ground finches. The three distance methods also found close relationships generally between each of two populations of Geospiza scandens, G. difficilis and G. conirostris. There is evidence for inconstancy of evolutionary rates among species. Results from distance methods allowing for rate variation among lineages suggest three conclusions which differ from Yang and Patton's findings. First, the monophyletic ground finches arose from the paraphyletic tree finches. Yang and Patton found that the ground finches and tree finches were sister monophyletic taxa. Second, Geospiza scandens appears to be a recently derived species, and not the most basal ground finch. Third, G. fuliginosa is not a recently derived species of ground finch, but was derived from an older split from the remaining ground finches. Most of these conclusions should be considered tentative both because the parsimony trees disagreed sharply with the distance trees and because no clades were strongly supported by the results of bootstrapping and statistical tests of alternative hypotheses. Absence of strong support for clades was probably due to insufficient data. Future phylogenetic studies, preferably using DNA sequence data from several unlinked loci, should sample several populations of each species, and should attempt to assess the importance of hybridization in species phylogeny.
Macropinocytosis is a fundamental mechanism that allows cells to take up extracellular liquid into large vesicles. It critically depends on the formation of a ring of protrusive actin beneath the plasma membrane, which develops into the macropinocytic cup. We show that macropinocytic cups in Dictyostelium are organised around coincident intense patches of PIP3, active Ras and active Rac. These signalling patches are invariably associated with a ring of active SCAR/WAVE at their periphery, as are all examined structures based on PIP3 patches, including phagocytic cups and basal waves. Patch formation does not depend on the enclosing F-actin ring, and patches become enlarged when the RasGAP NF1 is mutated, showing that Ras plays an instructive role. New macropinocytic cups predominantly form by splitting from existing ones. We propose that cup-shaped plasma membrane structures form from self-organizing patches of active Ras/PIP3, which recruit a ring of actin nucleators to their periphery.