Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

4172 Publications

Showing 2401-2410 of 4172 results
Gonen Lab
05/11/16 | Modeling truncated pixel values of faint reflections in MicroED images.
Hattne J, Shi D, de la Cruz MJ, Reyes FE, Gonen T
Journal of Applied Crystallography. 2016 May 11;49(3):. doi: 10.1107/S1600576716007196

The weak pixel counts surrounding the Bragg spots in a diffraction image are important for establishing a model of the background underneath the peak and estimating the reliability of the integrated intensities. Under certain circumstances, particularly with equipment not optimized for low-intensity measurements, these pixel values may be corrupted by corrections applied to the raw image. This can lead to truncation of low pixel counts, resulting in anomalies in the integrated Bragg intensities, such as systematically higher signal-to-noise ratios. A correction for this effect can be approximated by a three-parameter lognormal distribution fitted to the weakly positive-valued pixels at similar scattering angles. The procedure is validated by the improved refinement of an atomic model against structure factor amplitudes derived from corrected micro-electron diffraction (MicroED) images.

View Publication Page
01/08/18 | Modifying the Steric Properties in the Second Coordination Sphere of Designed Peptides Leads to Enhancement of Nitrite Reductase Activity
Koebke KJ, Yu F, Salerno E, Stappen CV, Tebo AG, Penner-Hahn JE, Pecoraro VL
Angewandte Chemie International Edition. 01/2018;57:3954 – 3957. doi: 10.1002/anie.201712757

Protein design is a useful strategy to interrogate the protein structure‐function relationship. We demonstrate using a highly modular 3‐stranded coiled coil (TRI‐peptide system) that a functional type 2 copper center exhibiting copper nitrite reductase (NiR) activity exhibits the highest homogeneous catalytic efficiency under aqueous conditions for the reduction of nitrite to NO and H2O. Modification of the amino acids in the second coordination sphere of the copper center increases the nitrite reductase activity up to 75‐fold compared to previously reported systems. We find also that steric bulk can be used to enforce a three‐coordinate CuI in a site, which tends toward two‐coordination with decreased steric bulk. This study demonstrates the importance of the second coordination sphere environment both for controlling metal‐center ligation and enhancing the catalytic efficiency of metalloenzymes and their analogues.

View Publication Page
Sternson Lab
09/01/04 | Modular synthesis and preliminary biological evaluation of stereochemically diverse 1,3-dioxanes.
Wong JC, Sternson SM, Louca JB, Hong R, Schreiber SL
Chemistry & Biology. 2004 Sep;11(9):1279-91. doi: 10.1016/j.chembiol.2004.07.012

Modular synthesis and substrate stereocontrol were combined to furnish 18,000 diverse 1,3-dioxanes whose distribution in chemical space rivals that of a reference set of over 2,000 bioactive small molecules. Library quality was assessed at key synthetic stages, culminating in a detailed postsynthesis analysis of purity, yield, and structural characterizability, and the resynthesis of library subsets that did not meet quality standards. The importance of this analysis-resynthesis process is highlighted by the discovery of new biological probes through organismal and protein binding assays, and by determination of the building block and stereochemical basis for their bioactivity. This evaluation of a portion of the 1,3-dioxane library suggests that many additional probes for chemical genetics will be identified as the entire library becomes biologically annotated.

View Publication Page
Looger Lab
01/01/09 | Modulating protein interactions by rational and computational design.
Marvin JS, Looger LL
Protein Engineering and Design. 2009:343-66
Sternson Lab
05/01/23 | Modulation of calcium signaling “on demand” to decipher the molecular mechanisms responsible for primary aldosteronism
Fedlaoui B, Cosentino T, Al Sayed ZR, Fernandes-Rosa FL, Hulot J, Magnus C, Sternson SM, Travers-Allard S, Baron S, Giscos-Douriez I, Zennaro MC, Boulkroun S
Archives of Cardiovascular Diseases Supplements. 2023 May 01;15(2):188. doi: 10.1016/j.acvdsp.2023.03.021

Primary aldosteronism (PA) is the most frequent form of secondary hypertension. Over the past two decades, major advances have been made in our understanding of the disease with the identification of germline or somatic mutations in ion channels and pumps. These mutations enhance calcium signaling, the main trigger of aldosterone biosynthesis.

View Publication Page
07/01/07 | Modulation of neuronal voltage-activated calcium and sodium channels by polyamines and pH.
Chen W, Harnett MT, Smith SM
Channels . 2007 Jul-Aug;1(4):281-90

The endogenous polyamines spermine, spermidine and putrescine are present at high concentrations inside neurons and can be released into the extracellular space where they have been shown to modulate ion channels. Here, we have examined polyamine modulation of voltage-activated Ca(2+) channels (VACCs) and voltage-activated Na(+) channels (VANCs) in rat superior cervical ganglion neurons using whole-cell voltage-clamp at physiological divalent concentrations. Polyamines inhibited VACCs in a concentration-dependent manner with IC(50)s for spermine, spermidine, and putrescine of 4.7 +/- 0.7, 11.2 +/- 1.4 and 90 +/- 36 mM, respectively. Polyamines caused inhibition by shifting the VACC half-activation voltage (V(0.5)) to depolarized potentials and by reducing total VACC permeability. The shift was described by Gouy-Chapman-Stern theory with a surface charge density of 0.120 +/- 0.005 e(-) nm(-2) and a surface potential of -19 mV. Attenuation of spermidine and spermine inhibition of VACC at decreased pH was explained by H(+) titration of surface charge. Polyamine-mediated effects also decreased at elevated pH due to the inhibitors having lower valence and being less effective at screening surface charge. Polyamines affected VANC currents indirectly by reducing TTX inhibition of VANCs at high pH. This may reflect surface charge induced decreases in the local TTX concentration or polyamine-TTX interactions. In conclusion, polyamines inhibit neuronal VACCs via complex interactions with extracellular H(+) and Ca. Many of the observed effects can be explained by a model incorporating polyamine binding, H(+) binding and surface charge screening.

View Publication Page
06/01/02 | Molecular and biochemical characterization of a distinct type of fructose-1,6-bisphosphatase from Pyrococcus furiosus.
Verhees CH, Akerboom J, Schiltz E, de Vos WM, van der Oost J
Journal of Bacteriology. 2002 Jun;184(12):3401-5

The Pyrococcus furiosus fbpA gene was cloned and expressed in Escherichia coli, and the fructose-1,6-bisphosphatase produced was subsequently purified and characterized. The dimeric enzyme showed a preference for fructose-1,6-bisphosphate, with a K(m) of 0.32 mM and a V(max) of 12.2 U/mg. The P. furiosus fructose-1,6-bisphosphatase was strongly inhibited by Li(+) (50% inhibitory concentration, 1 mM). Based on the presence of conserved sequence motifs and the substrate specificity of the P. furiosus fructose-1,6-bisphosphatase, we propose that this enzyme belongs to a new family, class IV fructose-1,6-bisphosphatase.

View Publication Page
07/11/24 | Molecular and cellular mechanisms of teneurin signaling in synaptic partner matching.
Xu C, Li Z, Lyu C, Hu Y, McLaughlin CN, Wong KK, Xie Q, Luginbuhl DJ, Li H, Udeshi ND, Svinkina T, Mani DR, Han S, Li T, Li Y, Guajardo R, Ting AY, Carr SA, Li J, Luo L
Cell. 2024 Jul 03:. doi: 10.1016/j.cell.2024.06.022

In developing brains, axons exhibit remarkable precision in selecting synaptic partners among many non-partner cells. Evolutionarily conserved teneurins are transmembrane proteins that instruct synaptic partner matching. However, how intracellular signaling pathways execute teneurins' functions is unclear. Here, we use in situ proximity labeling to obtain the intracellular interactome of a teneurin (Ten-m) in the Drosophila brain. Genetic interaction studies using quantitative partner matching assays in both olfactory receptor neurons (ORNs) and projection neurons (PNs) reveal a common pathway: Ten-m binds to and negatively regulates a RhoGAP, thus activating the Rac1 small GTPases to promote synaptic partner matching. Developmental analyses with single-axon resolution identify the cellular mechanism of synaptic partner matching: Ten-m signaling promotes local F-actin levels and stabilizes ORN axon branches that contact partner PN dendrites. Combining spatial proteomics and high-resolution phenotypic analyses, this study advanced our understanding of both cellular and molecular mechanisms of synaptic partner matching.

View Publication Page
11/07/05 | Molecular and genetic features of a labeled class of spinal substantia gelatinosa neurons in a transgenic mouse.
Hantman AW, Perl ER
Journal of Computational Neuroscience. 2005 Nov 7;492(1):90-100. doi: doi: 10.1002/cne.20709

Genetic incorporation in a mouse of a transgene containing the prion promoter and the green fluorescent protein (GFP) coding sequence labels a set of substantia gelatinosa (SG) neurons (SG-GFP) homogenous in morphology, electrophysiology, and γ-amino-butyric acid expression. In the present analysis the SG-GFP neurons are established to have protein kinase C-βII immunoreactivity and to lack evidence for the presence of calbindin D-28k, parvalbumin, and protein kinase C-γ. These neurons were hyperpolarized by mediators of descending control, norepinephrine and serotonin. Sequential polymerase chain reactions established the insertion of the transgene to be in the receptor protein tyrosine phosphatase kappa (RPTP-κ) and the laminin receptor 1 (ribosomal protein SA) pseudogene 1 locus. RPTP-κ expression in both GFP-labeled dorsal root ganglia and SG neurons raises the possibility that homophilic interactions of RPTP-κ contribute to establishment of connections between specific classes of primary afferent and SG neurons.

View Publication Page
Wu Lab
09/12/13 | Molecular architecture of the ATP-dependent chromatin-remodeling complex SWR1.
Nguyen VQ, Ranjan A, Stengel F, Wei D, Aebersold R, Wu C, Leschziner AE
Cell. 2013 Sep 12;154(6):1220-31. doi: 10.1016/j.cell.2013.08.018

The ATP-dependent chromatin-remodeling complex SWR1 exchanges a variant histone H2A.Z/H2B dimer for a canonical H2A/H2B dimer at nucleosomes flanking histone-depleted regions, such as promoters. This localization of H2A.Z is conserved throughout eukaryotes. SWR1 is a 1 megadalton complex containing 14 different polypeptides, including the AAA+ ATPases Rvb1 and Rvb2. Using electron microscopy, we obtained the three-dimensional structure of SWR1 and mapped its major functional components. Our data show that SWR1 contains a single heterohexameric Rvb1/Rvb2 ring that, together with the catalytic subunit Swr1, brackets two independently assembled multisubunit modules. We also show that SWR1 undergoes a large conformational change upon engaging a limited region of the nucleosome core particle. Our work suggests an important structural role for the Rvbs and a distinct substrate-handling mode by SWR1, thereby providing a structural framework for understanding the complex dimer-exchange reaction.

View Publication Page