Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3924 Publications

Showing 2701-2710 of 3924 results
Magee Lab
06/01/05 | Plasticity of dendritic function.
Magee JC, Johnston D
Current Opinion in Neurobiology. 2005 Jun;15:334-42. doi: 10.1002/cbic.201000254

The various properties of neuronal dendrites–their morphology, active membrane and synaptic properties–all play important roles in determining the functional capabilities of central nervous system neurons. Because of their fundamental involvement in both synaptic integration and synaptic plasticity, the active dendritic properties are important for both neuronal information processing and storage. The active properties of dendrites are determined by the densities of voltage-gated ion channels located within the dendrites in addition to the biophysical characteristics of those channels. The real power of this system resides in the level of plasticity that is provided by the many forms of channel modulation known to exist in neurons. Indeed, voltage gated ion channel modulation shapes the active properties of neuronal dendrites to specific conditions, thus tailoring the functional role of the single neuron within its circuit.

View Publication Page
10/30/12 | Plasticity of the asialoglycoprotein receptor deciphered by ensemble FRET imaging and single-molecule counting PALM imaging.
Renz M, Daniels BR, Vámosi G, Arias IM, Lippincott-Schwartz J
Proceedings of the National Academy of Sciences of the United States of America. 2012 Oct 30;109(44):E2989-97. doi: 10.1073/pnas.1211753109

The stoichiometry and composition of membrane protein receptors are critical to their function. However, the inability to assess receptor subunit stoichiometry in situ has hampered efforts to relate receptor structures to functional states. Here, we address this problem for the asialoglycoprotein receptor using ensemble FRET imaging, analytical modeling, and single-molecule counting with photoactivated localization microscopy (PALM). We show that the two subunits of asialoglycoprotein receptor [rat hepatic lectin 1 (RHL1) and RHL2] can assemble into both homo- and hetero-oligomeric complexes, displaying three forms with distinct ligand specificities that coexist on the plasma membrane: higher-order homo-oligomers of RHL1, higher-order hetero-oligomers of RHL1 and RHL2 with two-to-one stoichiometry, and the homo-dimer RHL2 with little tendency to further homo-oligomerize. Levels of these complexes can be modulated in the plasma membrane by exogenous ligands. Thus, even a simple two-subunit receptor can exhibit remarkable plasticity in structure, and consequently function, underscoring the importance of deciphering oligomerization in single cells at the single-molecule level.

View Publication Page
10/30/12 | Plasticity of the asialoglycoprotein receptor deciphered by ensemble FRET imaging and single-molecule counting PALM imaging.
Renz M, Daniels BR, Vámosi G, Arias IM, Lippincott-Schwartz J
Proceedings of the National Academy of Sciences of the United States of America. 2012 Oct 30;109(44):E2989-97. doi: 10.1073/pnas.1211753109

The stoichiometry and composition of membrane protein receptors are critical to their function. However, the inability to assess receptor subunit stoichiometry in situ has hampered efforts to relate receptor structures to functional states. Here, we address this problem for the asialoglycoprotein receptor using ensemble FRET imaging, analytical modeling, and single-molecule counting with photoactivated localization microscopy (PALM). We show that the two subunits of asialoglycoprotein receptor [rat hepatic lectin 1 (RHL1) and RHL2] can assemble into both homo- and hetero-oligomeric complexes, displaying three forms with distinct ligand specificities that coexist on the plasma membrane: higher-order homo-oligomers of RHL1, higher-order hetero-oligomers of RHL1 and RHL2 with two-to-one stoichiometry, and the homo-dimer RHL2 with little tendency to further homo-oligomerize. Levels of these complexes can be modulated in the plasma membrane by exogenous ligands. Thus, even a simple two-subunit receptor can exhibit remarkable plasticity in structure, and consequently function, underscoring the importance of deciphering oligomerization in single cells at the single-molecule level.

View Publication Page
10/08/15 | Plasticity-driven individualization of olfactory coding in mushroom body output neurons.
Hige T, Aso Y, Rubin GM, Turner GC
Nature. 2015 Oct 8;526(7572):258-62. doi: 10.1038/nature15396

Although all sensory circuits ascend to higher brain areas where stimuli are represented in sparse, stimulus-specific activity patterns, relatively little is known about sensory coding on the descending side of neural circuits, as a network converges. In insects, mushroom bodies have been an important model system for studying sparse coding in the olfactory system, where this format is important for accurate memory formation. In Drosophila, it has recently been shown that the 2,000 Kenyon cells of the mushroom body converge onto a population of only 34 mushroom body output neurons (MBONs), which fall into 21 anatomically distinct cell types. Here we provide the first, to our knowledge, comprehensive view of olfactory representations at the fourth layer of the circuit, where we find a clear transition in the principles of sensory coding. We show that MBON tuning curves are highly correlated with one another. This is in sharp contrast to the process of progressive decorrelation of tuning in the earlier layers of the circuit. Instead, at the population level, odour representations are reformatted so that positive and negative correlations arise between representations of different odours. At the single-cell level, we show that uniquely identifiable MBONs display profoundly different tuning across different animals, but that tuning of the same neuron across the two hemispheres of an individual fly was nearly identical. Thus, individualized coordination of tuning arises at this level of the olfactory circuit. Furthermore, we find that this individualization is an active process that requires a learning-related gene, rutabaga. Ultimately, neural circuits have to flexibly map highly stimulus-specific information in sparse layers onto a limited number of different motor outputs. The reformatting of sensory representations we observe here may mark the beginning of this sensory-motor transition in the olfactory system.

View Publication Page
05/29/22 | Plasticity-induced actin polymerization in the dendritic shaft regulates intracellular AMPA receptor trafficking.
V. C. Wong , P.R. Houlihan , H. Liu , D. Walpita , M.C. DeSantis , Z. Liu , E. K. O’Shea
bioRxiv. 2022 May 29:. doi: 10.1101/2022.05.29.493906

AMPA-type receptors (AMPARs) are rapidly inserted into synapses undergoing long-term potentiation (LTP) to increase synaptic transmission, but how AMPAR-containing vesicles are selectively trafficked to these synapses during LTP is not known. Here we developed a strategy to label AMPAR GluA1 subunits expressed from the endogenous loci of rat hippocampal neurons such that the motion of GluA1-containing vesicles in time-lapse sequences can be characterized using single-particle tracking and mathematical modeling. We find that GluA1-containing vesicles are confined and concentrated near sites of stimulation-induced plasticity. We show that confinement is mediated by actin polymerization, which hinders the active transport of GluA1-containing vesicles along the length of the dendritic shaft by modulating the rheological properties of the cytoplasm. Actin polymerization also facilitates myosin-mediated transport of GluA1-containing vesicles to exocytic sites. We conclude that neurons utilize F-actin to increase vesicular GluA1 reservoirs and promote exocytosis proximal to the sites of neuronal activity.

View Publication Page
05/01/19 | Pleiotropic effects of ebony and tan on pigmentation and cuticular hydrocarbon composition in Drosophila melanogaster.
Massey JH, Akiyama N, Bien T, Dreisewerd K, Wittkopp PJ, Yew JY, Takahashi A
Frontiers in Physiology. 05/2019;10:518. doi: 10.3389/fphys.2019.00518

Pleiotropic genes are genes that affect more than one trait. For example, many genes required for pigmentation in the fruit fly also affect traits such as circadian rhythms, vision, and mating behavior. Here, we present evidence that two pigmentation genes, and , which encode enzymes catalyzing reciprocal reactions in the melanin biosynthesis pathway, also affect cuticular hydrocarbon (CHC) composition in females. More specifically, we report that loss-of-function mutants have a CHC profile that is biased toward long (>25C) chain CHCs, whereas loss-of-function mutants have a CHC profile that is biased toward short (<25C) chain CHCs. Moreover, pharmacological inhibition of dopamine synthesis, a key step in the melanin synthesis pathway, reversed the changes in CHC composition seen in mutants, making the CHC profiles similar to those seen in mutants. These observations suggest that genetic variation affecting and/or activity might cause correlated changes in pigmentation and CHC composition in natural populations. We tested this possibility using the Genetic Reference Panel (DGRP) and found that CHC composition covaried with pigmentation as well as levels of and expression in newly eclosed adults in a manner consistent with the and mutant phenotypes. These data suggest that the pleiotropic effects of and might contribute to covariation of pigmentation and CHC profiles in .

View Publication Page
12/01/05 | Pleiotropic functions of a conserved insect-specific Hox peptide motif.
Hittinger CT, Stern DL, Carroll SB
Development. 2005 Dec;132(23):5261-70. doi: 10.1242/dev.02146

The proteins that regulate developmental processes in animals have generally been well conserved during evolution. A few cases are known where protein activities have functionally evolved. These rare examples raise the issue of how highly conserved regulatory proteins with many roles evolve new functions while maintaining old functions. We have investigated this by analyzing the function of the ;QA' peptide motif of the Hox protein Ultrabithorax (Ubx), a motif that has been conserved throughout insect evolution since its establishment early in the lineage. We precisely deleted the QA motif at the endogenous locus via allelic replacement in Drosophila melanogaster. Although the QA motif was originally characterized as involved in the repression of limb formation, we have found that it is highly pleiotropic. Curiously, deleting the QA motif had strong effects in some tissues while barely affecting others, suggesting that QA function is preferentially required for a subset of Ubx target genes. QA deletion homozygotes had a normal complement of limbs, but, at reduced doses of Ubx and the abdominal-A (abd-A) Hox gene, ectopic limb primordia and adult abdominal limbs formed when the QA motif was absent. These results show that redundancy and the additive contributions of activity-regulating peptide motifs play important roles in moderating the phenotypic consequences of Hox protein evolution, and that pleiotropic peptide motifs that contribute quantitatively to several functions are subject to intense purifying selection.

View Publication Page
09/14/17 | Pleiotropy in enhancer function is encoded through diverse genetic architectures.
Preger-Ben Noon E, Sabarís G, Ortiz DM, Sager J, Liebowitz A, Stern DL, Frankel N
bioRxiv. 2017 Sep 14:. doi: 10.1101/188532

Developmental genes can have complex cis-regulatory regions, with multiple enhancers scattered across stretches of DNA spanning tens or hundreds of kilobases. Early work revealed remarkable modularity of enhancers, where distinct regions of DNA, bound by combinations of transcription factors, drive gene expression in defined spatio-temporal domains. Nevertheless, a few reports have shown that enhancer function may be required in multiple developmental stages, implying that regulatory elements can be pleiotropic. In these cases, it is not clear whether the pleiotropic enhancers employ the same transcription factor binding sites to drive expression at multiple developmental stages or whether enhancers function as chromatin scaffolds, where independent sets of transcription factor binding sites act at different stages. In this work we have studied the activity of the enhancers of the shavenbaby gene throughout D. melanogaster development. We found that all seven shavenbaby enhancers drive gene expression in multiple tissues and developmental stages at varying levels of redundancy. We have explored how this pleiotropy is encoded in two of these enhancers. In one enhancer, the same transcription factor binding sites contribute to embryonic and pupal expression, whereas for a second enhancer, these roles are largely encoded by distinct transcription factor binding sites. Our data suggest that enhancer pleiotropy might be a common feature of cis-regulatory regions of developmental genes and that this pleiotropy can be encoded through multiple genetic architectures.

View Publication Page
06/29/05 | Pneumatic capillary gun for ballistic delivery of microparticles.
Rinberg D, Simonnet C, Groisman A
Applied Physics Letters. 2005 Jun 29;87:014103

A pneumatic gun for ballistic delivery of microparticles to soft targets is proposed and demonstrated. The particles are accelerated by a high-speed flow of helium in a capillary tube. Vacuum suction applied to a concentric larger diameter tube is used to divert substantially all of the flow of helium from the gun nozzle, thereby preventing the gas from hitting and damaging the target. Speed of ejection of micron-sized gold particles from the gun nozzle, and their depth of penetration into agarose gels are reported.

View Publication Page
12/03/18 | Point process latent variable models of larval zebrafish behavior
Anuj Sharma , Robert Johnson , Florian Engert , Scott W. Linderman
NeurIPS. 12/2018:

A fundamental goal of systems neuroscience is to understand how neural activity gives rise to natural behavior. In order to achieve this goal, we must first build comprehensive models that offer quantitative descriptions of behavior. We develop a new class of probabilistic models to tackle this challenge in the study of larval zebrafish, an important model organism for neuroscience. Larval zebrafish locomote via sequences of punctate swim bouts--brief flicks of the tail--which are naturally modeled as a marked point process. However, these sequences of swim bouts belie a set of discrete and continuous internal states, latent variables that are not captured by standard point process models. We incorporate these variables as latent marks of a point process and explore various models for their dynamics. To infer the latent variables and fit the parameters of this model, we develop an amortized variational inference algorithm that targets the collapsed posterior distribution, analytically marginalizing out the discrete latent variables. With a dataset of over 120,000 swim bouts, we show that our models reveal interpretable discrete classes of swim bouts and continuous internal states like hunger that modulate their dynamics. These models are a major step toward understanding the natural behavioral program of the larval zebrafish and, ultimately, its neural underpinnings.

View Publication Page