Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3920 Publications

Showing 281-290 of 3920 results
01/18/11 | A structural and functional ground plan for neurons in the hindbrain of zebrafish.
Kinkhabwala A, Riley M, Koyama M, Monen J, Satou C, Kimura Y, Higashijima S, Fetcho J
Proceedings of the National Academy of Sciences of the United States of America. 2011 Jan 18;108(3):1164-9. doi: 10.1073/pnas.1012185108

The vertebrate hindbrain contains various sensory-motor networks controlling movements of the eyes, jaw, head, and body. Here we show that stripes of neurons with shared neurotransmitter phenotype that extend throughout the hindbrain of young zebrafish reflect a broad underlying structural and functional patterning. The neurotransmitter stripes contain cell types with shared gross morphologies and transcription factor markers. Neurons within a stripe are stacked systematically by extent and location of axonal projections, input resistance, and age, and are recruited along the axis of the stripe during behavior. The implication of this pattern is that the many networks in hindbrain are constructed from a series of neuronal components organized into stripes that are ordered from top to bottom according to a neuron’s age, structural and functional properties, and behavioral roles. This simple organization probably forms a foundation for the construction of the networks underlying the many behaviors produced by the hindbrain.

View Publication Page
11/01/94 | A sublinear algorithm for approximate keyword matching.
Myers E
Algorithmica. 1994 Nov;12(4-5):345-74

Given a relatively short query stringW of lengthP, a long subject stringA of lengthN, and a thresholdD, theapproximate keyword search problem is to find all substrings ofA that align withW with not more than D insertions, deletions, and mismatches. In typical applications, such as searching a DNA sequence database, the size of the “database”A is much larger than that of the queryW, e.g.,N is on the order of millions or billions andP is a hundred to a thousand. In this paper we present an algorithm that given a precomputedindex of the databaseA, finds rare matches in time that issublinear inN, i.e.,N c for somec<1. The sequenceA must be overa. finite alphabet σ. More precisely, our algorithm requires 0(DN pow(ɛ)  logN) expected-time where ɛ=D/P is the maximum number of differences as a percentage of query length, and pow(ɛ) is an increasing and concave function that is 0 when ɛ=0. Thus the algorithm is superior to current O(DN) algorithms when ɛ is small enough to guarantee that pow(ɛ) < 1. As seen in the paper, this is true for a wide range of ɛ, e.g., ɛ. up to 33% for DNA sequences (¦⌆¦=4) and 56% for proteins sequences (¦⌆¦=20). In preliminary practical experiments, the approach gives a 50-to 500-fold improvement over previous algorithms for prolems of interest in molecular biology.

View Publication Page
08/23/12 | A subset of dopamine neurons signals reward for odour memory in Drosophila.
Liu C, Placais P, Yamagata N, Pfeiffer BD, Aso Y, Friedrich AB, Siwanowicz I, Rubin GM, Preat T, Tanimoto H
Nature. 2012 Aug 23;488(7412):512-6. doi: 10.1038/nature11304

Animals approach stimuli that predict a pleasant outcome. After the paired presentation of an odour and a reward, Drosophila melanogaster can develop a conditioned approach towards that odour. Despite recent advances in understanding the neural circuits for associative memory and appetitive motivation, the cellular mechanisms for reward processing in the fly brain are unknown. Here we show that a group of dopamine neurons in the protocerebral anterior medial (PAM) cluster signals sugar reward by transient activation and inactivation of target neurons in intact behaving flies. These dopamine neurons are selectively required for the reinforcing property of, but not a reflexive response to, the sugar stimulus. In vivo calcium imaging revealed that these neurons are activated by sugar ingestion and the activation is increased on starvation. The output sites of the PAM neurons are mainly localized to the medial lobes of the mushroom bodies (MBs), where appetitive olfactory associative memory is formed. We therefore propose that the PAM cluster neurons endow a positive predictive value to the odour in the MBs. Dopamine in insects is known to mediate aversive reinforcement signals. Our results highlight the cellular specificity underlying the various roles of dopamine and the importance of spatially segregated local circuits within the MBs.

View Publication Page
Heberlein LabSimpson Lab
09/02/15 | A subset of serotonergic neurons evokes hunger in adult Drosophila.
Albin SD, Kaun KR, Knapp J, Chung P, Heberlein U, Simpson JH
Current Biology : CB. 2015 Sep 2;25(18):2435-40. doi: 10.1016/j.cub.2015.08.005

Hunger is a complex motivational state that drives multiple behaviors. The sensation of hunger is caused by an imbalance between energy intake and expenditure. One immediate response to hunger is increased food consumption. Hunger also modulates behaviors related to food seeking such as increased locomotion and enhanced sensory sensitivity in both insects [1-5] and vertebrates [6, 7]. In addition, hunger can promote the expression of food-associated memory [8, 9]. Although progress is being made [10], how hunger is represented in the brain and how it coordinates these behavioral responses is not fully understood in any system. Here, we use Drosophila melanogaster to identify neurons encoding hunger. We found a small group of neurons that, when activated, induced a fed fly to eat as though it were starved, suggesting that these neurons are downstream of the metabolic regulation of hunger. Artificially activating these neurons also promotes appetitive memory performance in sated flies, indicating that these neurons are not simply feeding command neurons but likely play a more general role in encoding hunger. We determined that the neurons relevant for the feeding effect are serotonergic and project broadly within the brain, suggesting a possible mechanism for how various responses to hunger are coordinated. These findings extend our understanding of the neural circuitry that drives feeding and enable future exploration of how state influences neural activity within this circuit.

View Publication Page
Gonen Lab
06/01/14 | A suite of software for processing MicroED data of extremely small protein crystals.
Iadanza MG, Gonen T
Journal of Applied Crystallography. 2014 Jun 1;47(Pt 3):1140-45. doi: 10.1107/S1600576714008073

Electron diffraction of extremely small three-dimensional crystals (MicroED) allows for structure determination from crystals orders of magnitude smaller than those used for X-ray crystallography. MicroED patterns, which are collected in a transmission electron microscope, were initially not amenable to indexing and intensity extraction by standard software, which necessitated the development of a suite of programs for data processing. The MicroED suite was developed to accomplish the tasks of unit-cell determination, indexing, background subtraction, intensity measurement and merging, resulting in data that can be carried forward to molecular replacement and structure determination. This ad hoc solution has been modified for more general use to provide a means for processing MicroED data until the technique can be fully implemented into existing crystallographic software packages. The suite is written in Python and the source code is available under a GNU General Public License.

View Publication Page
Simpson Lab
08/19/14 | A suppression hierarchy among competing motor programs drives sequential grooming in Drosophila.
Seeds AM, Ravbar P, Chung P, Hampel S, Midgley FM, Mensh BD, Simpson JH
eLife. 2014 Aug 19;3:e02951. doi: 10.7554/eLife.02951

Motor sequences are formed through the serial execution of different movements, but how nervous systems implement this process remains largely unknown. We determined the organizational principles governing how dirty fruit flies groom their bodies with sequential movements. Using genetically targeted activation of neural subsets, we drove distinct motor programs that clean individual body parts. This enabled competition experiments revealing that the motor programs are organized into a suppression hierarchy; motor programs that occur first suppress those that occur later. Cleaning one body part reduces the sensory drive to its motor program, which relieves suppression of the next movement, allowing the grooming sequence to progress down the hierarchy. A model featuring independently evoked cleaning movements activated in parallel, but selected serially through hierarchical suppression, was successful in reproducing the grooming sequence. This provides the first example of an innate motor sequence implemented by the prevailing model for generating human action sequences.

View Publication Page
10/25/12 | A survey of 6,300 genomic fragments for cis-regulatory activity in the imaginal discs of Drosophila melanogaster.
Jory A, Estella C, Giorgianni MW, Slattery M, Laverty TR, Rubin GM, Mann RS
Cell Reports. 2012 Oct 25;2(4):1014-24. doi: 10.1016/j.celrep.2012.09.010

Over 6,000 fragments from the genome of Drosophila melanogaster were analyzed for their ability to drive expression of GAL4 reporter genes in the third-instar larval imaginal discs. About 1,200 reporter genes drove expression in the eye, antenna, leg, wing, haltere, or genital imaginal discs. The patterns ranged from large regions to individual cells. About 75% of the active fragments drove expression in multiple discs; 20% were expressed in ventral, but not dorsal, discs (legs, genital, and antenna), whereas \~{}23% were expressed in dorsal but not ventral discs (wing, haltere, and eye). Several patterns, for example, within the leg chordotonal organ, appeared a surprisingly large number of times. Unbiased searches for DNA sequence motifs suggest candidate transcription factors that may regulate enhancers with shared activities. Together, these expression patterns provide a valuable resource to the community and offer a broad overview of how transcriptional regulatory information is distributed in the Drosophila genome.

View Publication Page
Eddy/Rivas Lab
01/01/09 | A survey of nematode SmY RNAs.
Jones TA, Otto W, Marz M, Eddy SR, Stadler PF
RNA Biology. 2009 Jan-Mar;6(1):5-8

SmY RNAs are a family of approximately 70-90 nt small nuclear RNAs found in nematodes. In C. elegans, SmY RNAs copurify in a small ribonucleoprotein (snRNP) complex related to the SL1 and SL2 snRNPs that are involved in nematode mRNA trans-splicing. Here we describe a comprehensive computational analysis of SmY RNA homologs found in the currently available genome sequences. We identify homologs in all sequenced nematode genomes in class Chromadorea. We are unable to identify homologs in a more distantly related nematode species, Trichinella spiralis (class: Dorylaimia), and in representatives of non-nematode phyla that use trans-splicing. Using comparative RNA sequence analysis, we infer a conserved consensus SmY RNA secondary structure consisting of two stems flanking a consensus Sm protein binding site. A representative seed alignment of the SmY RNA family, annotated with the inferred consensus secondary structure, has been deposited with the Rfam RNA families database.

View Publication Page
05/01/24 | A survival-critical role for Drosophila giant interneurons during predation
Cynthia M. Chai , Carmen Morrow , Dhyey D. Parikh , Catherine R. von Reyn , Anthony Leonardo , Gwyneth M Card
bioRxiv. 2024 May 1:. doi: 10.1101/2024.04.30.591368

Large axon-diameter descending neurons are metabolically costly but transmit information rapidly from sensory neurons in the brain to motor neurons in the nerve cord. They have thus endured as a common feature of escape circuits in many animal species where speed is paramount. Though often considered isolated command neurons triggering fast-reaction-time, all-or-none escape responses, giant neurons are just one of multiple parallel pathways enabling selection between behavioral alternatives. Such degeneracy among escape circuits makes it unclear if and how giant neurons benefit prey fitness. Here we competed Drosophila melanogaster flies with genetically-silenced Giant Fibers (GFs) against flies with functional GFs in an arena with wild-caught damselfly predators and find that GF silencing decreases prey survival. Kinematic analysis of damselfly attack trajectories shows that decreased prey survival fitness results from GF-silenced flies failing to escape during predator attack speeds and approach distances that would normally elicit successful escapes. When challenged with a virtual looming predator, fly GFs promote survival by enforcing selection of a short-duration takeoff sequence as opposed to reducing reaction time. Our findings support a role for the GFs in promoting prey survival by influencing action selection as a means to enhance escape performance during realistically complex predation scenarios.

View Publication Page
02/09/15 | A synaptic mechanism for retinal adaptation to luminance and contrast.
Jarsky T, Cembrowski M, Logan SM, Kath WL, Riecke H, Demb JB, Singer JH
Journal of Neuroscience. 2011 Jul 27;31(30):11003-15. doi: 10.1523/JNEUROSCI.2631-11.2011

The gain of signaling in primary sensory circuits is matched to the stimulus intensity by the process of adaptation. Retinal neural circuits adapt to visual scene statistics, including the mean (background adaptation) and the temporal variance (contrast adaptation) of the light stimulus. The intrinsic properties of retinal bipolar cells and synapses contribute to background and contrast adaptation, but it is unclear whether both forms of adaptation depend on the same cellular mechanisms. Studies of bipolar cell synapses identified synaptic mechanisms of gain control, but the relevance of these mechanisms to visual processing is uncertain because of the historical focus on fast, phasic transmission rather than the tonic transmission evoked by ambient light. Here, we studied use-dependent regulation of bipolar cell synaptic transmission evoked by small, ongoing modulations of membrane potential (V(M)) in the physiological range. We made paired whole-cell recordings from rod bipolar (RB) and AII amacrine cells in a mouse retinal slice preparation. Quasi-white noise voltage commands modulated RB V(M) and evoked EPSCs in the AII. We mimicked changes in background luminance or contrast, respectively, by depolarizing the V(M) or increasing its variance. A linear systems analysis of synaptic transmission showed that increasing either the mean or the variance of the presynaptic V(M) reduced gain. Further electrophysiological and computational analyses demonstrated that adaptation to mean potential resulted from both Ca channel inactivation and vesicle depletion, whereas adaptation to variance resulted from vesicle depletion alone. Thus, background and contrast adaptation apparently depend in part on a common synaptic mechanism.

View Publication Page