Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3924 Publications

Showing 3021-3030 of 3924 results
06/16/09 | Self-organization of the Escherichia coli chemotaxis network imaged with super-resolution light microscopy. (With commentary)
Greenfield D, McEvoy AL, Shroff H, Crooks GE, Wingreen NS, Betzig E, Liphardt J
PLoS Biology. 2009 Jun 16;7(6):e1000137. doi: 10.1371/journal.pbio.1000137

The Escherichia coli chemotaxis network is a model system for biological signal processing. In E. coli, transmembrane receptors responsible for signal transduction assemble into large clusters containing several thousand proteins. These sensory clusters have been observed at cell poles and future division sites. Despite extensive study, it remains unclear how chemotaxis clusters form, what controls cluster size and density, and how the cellular location of clusters is robustly maintained in growing and dividing cells. Here, we use photoactivated localization microscopy (PALM) to map the cellular locations of three proteins central to bacterial chemotaxis (the Tar receptor, CheY, and CheW) with a precision of 15 nm. We find that cluster sizes are approximately exponentially distributed, with no characteristic cluster size. One-third of Tar receptors are part of smaller lateral clusters and not of the large polar clusters. Analysis of the relative cellular locations of 1.1 million individual proteins (from 326 cells) suggests that clusters form via stochastic self-assembly. The super-resolution PALM maps of E. coli receptors support the notion that stochastic self-assembly can create and maintain approximately periodic structures in biological membranes, without direct cytoskeletal involvement or active transport.

Commentary: Our goal as tool developers is to invent methods capable of uncovering new biological insights unobtainable by pre-existing technologies. A terrific example is given by this paper, where grad students Derek Greenfield and Ann McEvoy in Jan Liphardt’s group at Berkeley used our PALM to image the size and position distributions of chemotaxis proteins in E. Coli with unprecedented precision and sensitivity. Their analysis revealed that the cluster sizes follow a stretched exponential distribution, and the density of clusters is highest furthest away from the largest (e.g., polar) clusters. Both observations support a model for passive self-assembly rather than active cytoskeletal assembly of the chemotaxis network.

View Publication Page
02/13/17 | Self-organizing actin patterns shape membrane architecture but not cell mechanics.
Fritzsche M, Li D, Colin-York H, Chang VT, Moeendarbary E, Felce JH, Sezgin E, Charras G, Betzig E, Eggeling C
Nature Communications. 2017 Feb 13;8:14347. doi: 10.1038/ncomms14347

Cell-free studies have demonstrated how collective action of actin-associated proteins can organize actin filaments into dynamic patterns, such as vortices, asters and stars. Using complementary microscopic techniques, we here show evidence of such self-organization of the actin cortex in living HeLa cells. During cell adhesion, an active multistage process naturally leads to pattern transitions from actin vortices over stars into asters. This process is primarily driven by Arp2/3 complex nucleation, but not by myosin motors, which is in contrast to what has been theoretically predicted and observed in vitro. Concomitant measurements of mechanics and plasma membrane fluidity demonstrate that changes in actin patterning alter membrane architecture but occur functionally independent of macroscopic cortex elasticity. Consequently, tuning the activity of the Arp2/3 complex to alter filament assembly may thus be a mechanism allowing cells to adjust their membrane architecture without affecting their macroscopic mechanical properties.

View Publication Page
10/01/10 | Semi-automated reconstruction of neural circuits using electron microscopy.
Chklovskii DB, Vitaladevuni S, Scheffer LK
Current Opinion in Neurobiology. 2010 Oct;20:667-75. doi: 10.1371/journal.pcbi.1001066

Reconstructing neuronal circuits at the level of synapses is a central problem in neuroscience, and the focus of the nascent field of connectomics. Previously used to reconstruct the C. elegans wiring diagram, serial-section transmission electron microscopy (ssTEM) is a proven technique for the task. However, to reconstruct more complex circuits, ssTEM will require the automation of image processing. We review progress in the processing of electron microscopy images and, in particular, a semi-automated reconstruction pipeline deployed at Janelia. Drosophila circuits underlying identified behaviors are being reconstructed in the pipeline with the goal of generating a complete Drosophila connectome.

View Publication Page
Zlatic LabCardona Lab
05/09/17 | Semiparametric spectral modeling of the Drosophila connectome.
Priebe CE, Park Y, Tang M, Athreya A, Lyzinski V, Vogelstein JT, Qin Y, Cocanougher B, Eichler K, Zlatic M, Cardona A
arXiv. 2017 May 9:1705.03297

We present semiparametric spectral modeling of the complete larval Drosophila mushroom body connectome. Motivated by a thorough exploratory data analysis of the network via Gaussian mixture modeling (GMM) in the adjacency spectral embedding (ASE) representation space, we introduce the latent structure model (LSM) for network modeling and inference. LSM is a generalization of the stochastic block model (SBM) and a special case of the random dot product graph (RDPG) latent position model, and is amenable to semiparametric GMM in the ASE representation space. The resulting connectome code derived via semiparametric GMM composed with ASE captures latent connectome structure and elucidates biologically relevant neuronal properties.

View Publication Page
11/10/17 | Semisynthetic fluorescent pH sensors for imaging exocytosis and endocytosis.
Martineau M, Somasundaram A, Grimm JB, Gruber TD, Choquet D, Taraska JW, Lavis LD, Perrais D
Nature Communications. 2017 Nov 10;8(1):1412. doi: 10.1038/s41467-017-01752-5

The GFP-based superecliptic pHluorin (SEP) enables detection of exocytosis and endocytosis, but its performance has not been duplicated in red fluorescent protein scaffolds. Here we describe "semisynthetic" pH-sensitive protein conjugates with organic fluorophores, carbofluorescein, and Virginia Orange that match the properties of SEP. Conjugation to genetically encoded self-labeling tags or antibodies allows visualization of both exocytosis and endocytosis, constituting new bright sensors for these key steps of synaptic transmission.

View Publication Page
08/01/20 | Sensing cellular biochemistry with fluorescent chemical–genetic hybrids
Gautier A, Tebo AG
Current Opinion in Chemical Biology. 08/2020;57:58–64. doi: 10.1016/j.cbpa.2020.04.005

Fluorescent biosensors are powerful tools for the detection of biochemical events inside cells with high spatiotemporal resolution. Biosensors based on fluorescent proteins often suffer from issues with photostability and brightness. On the other hand, hybrid, chemical–genetic systems present unique opportunities to combine the strengths of synthetic, organic chemistry with biological macromolecules to generate exquisitely tailored semisynthetic sensors.

View Publication Page
12/04/16 | Sensitive enhancement of vessel wall imaging with an endoesophageal Wireless Amplified NMR Detector (WAND).
Zeng X, Barbic M, Chen L, Qian C
Magnetic Resonance in Medicine. 2016 Dec 04;78(5):2048-54. doi: 10.1002/mrm.26562

PURPOSE: To improve the imaging quality of vessel walls with an endoesophageal Wireless Amplified NMR Detector (WAND).

METHODS: A cylindrically shaped double-frequency resonator has been constructed with a single metal wire that is self-connected by a pair of nonlinear capacitors. The double-frequency resonator can convert wirelessly provided pumping power into amplified MR signals. This compact design makes the detector easily insertable into a rodent esophagus.

RESULTS: The detector has good longitudinal and axial symmetry. Compared to an external surface coil, the WAND can enhance detection sensitivity by at least 5 times, even when the distance separation between the region of interest and the detector's cylindrical surface is twice the detector's own radius. Such detection capability enables us to observe vessel walls near the aortic arch and carotid bifurcation with elevated sensitivity.

CONCLUSION: A cylindrical MRI detector integrated with a wireless-powered amplifier has been developed as an endoesophageal detector to enhance detection sensitivity of vessel walls. This detector can greatly improve the imaging quality for vessel regions that are susceptible to atherosclerotic lesions. Magn Reson Med, 2016. © 2016 International Society for Magnetic Resonance in Medicine.

View Publication Page
03/24/16 | Sensitive red protein calcium indicators for imaging neural activity.
Dana H, Mohar B, Sun Y, Narayan S, Gordus A, Hasseman JP, Tsegaye G, Holt GT, Hu A, Walpita D, Patel R, Macklin JJ, Bargmann CI, Ahrens MB, Schreiter ER, Jayaraman V, Looger LL, Svoboda K, Kim DS
eLife. 2016 Mar 24;5:. doi: 10.7554/eLife.12727

Genetically encoded calcium indicators (GECIs) allow measurement of activity in large populations of neurons and in small neuronal compartments, over times of milliseconds to months. Although GFP-based GECIs are widely used for in vivo neurophysiology, GECIs with red-shifted excitation and emission spectra have advantages for in vivo imaging because of reduced scattering and absorption in tissue, and a consequent reduction in phototoxicity. However, current red GECIs are inferior to the state-of-the-art GFP-based GCaMP6 indicators for detecting and quantifying neural activity. Here we present improved red GECIs based on mRuby (jRCaMP1a, b) and mApple (jRGECO1a), with sensitivity comparable to GCaMP6. We characterized the performance of the new red GECIs in cultured neurons and in mouse, Drosophila, zebrafish and C. elegans in vivo. Red GECIs facilitate deep-tissue imaging, dual-color imaging together with GFP-based reporters, and the use of optogenetics in combination with calcium imaging.

View Publication Page
05/17/23 | Sensitivity optimization of a rhodopsin-based fluorescent voltage indicator
Abdelfattah AS, Zheng J, Singh A, Huang Y, Reep D, Tsegaye G, Tsang A, Arthur BJ, Rehorova M, Olson CV, Shuai Y, Zhang L, Fu T, Milkie DE, Moya MV, Weber TD, Lemire AL, Baker CA, Falco N, Zheng Q, Grimm JB, Yip MC, Walpita D, Chase M, Campagnola L, Murphy GJ, Wong AM, Forest CR, Mertz J, Economo MN, Turner GC, Koyama M, Lin B, Betzig E, Novak O, Lavis LD, Svoboda K, Korff W, Chen T, Schreiter ER, Hasseman JP, Kolb I
Neuron. 2023 May 17;111(10):1547-1563. doi: 10.1016/j.neuron.2023.03.009

The ability to optically image cellular transmembrane voltages at millisecond-timescale resolutions can offer unprecedented insight into the function of living brains in behaving animals. Here, we present a point mutation that increases the sensitivity of Ace2 opsin-based voltage indicators. We use the mutation to develop Voltron2, an improved chemigeneic voltage indicator that has a 65% higher sensitivity to single APs and 3-fold higher sensitivity to subthreshold potentials than Voltron. Voltron2 retained the sub-millisecond kinetics and photostability of its predecessor, although with lower baseline fluorescence. In multiple in vitro and in vivo comparisons with its predecessor across multiple species, we found Voltron2 to be more sensitive to APs and subthreshold fluctuations. Finally, we used Voltron2 to study and evaluate the possible mechanisms of interneuron synchronization in the mouse hippocampus. Overall, we have discovered a generalizable mutation that significantly increases the sensitivity of Ace2 rhodopsin-based sensors, improving their voltage reporting capability.

View Publication Page
04/03/17 | Sensorimotor neuroscience: motor precision meets vision.
Longden KD, Huston SJ, Reiser MB
Current Biology : CB. 2017 Apr 03;27(7):R261-R263. doi: 10.1016/j.cub.2017.02.047

Visual motion sensing neurons in the fly also encode a range of behavior-related signals. These nonvisual inputs appear to be used to correct some of the challenges of visually guided locomotion.

View Publication Page