Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3924 Publications

Showing 3241-3250 of 3924 results
Grigorieff Lab
01/27/20 | Structure and assembly of calcium homeostasis modulator proteins.
Syrjanen JL, Michalski K, Chou T, Grant T, Rao S, Simorowski N, Tucker SJ, Grigorieff N, Furukawa H
Nature Structural and Molecular Biology. 2020 Jan 27;27(2):150-9. doi: 10.1038/s41594-019-0369-9

The biological membranes of many cell types contain large-pore channels through which a wide variety of ions and metabolites permeate. Examples include connexin, innexin and pannexin, which form gap junctions and/or bona fide cell surface channels. The most recently identified large-pore channels are the calcium homeostasis modulators (CALHMs), through which ions and ATP permeate in a voltage-dependent manner to control neuronal excitability, taste signaling and pathologies of depression and Alzheimer's disease. Despite such critical biological roles, the structures and patterns of their oligomeric assembly remain unclear. Here, we reveal the structures of two CALHMs, chicken CALHM1 and human CALHM2, by single-particle cryo-electron microscopy (cryo-EM), which show novel assembly of the four transmembrane helices into channels of octamers and undecamers, respectively. Furthermore, molecular dynamics simulations suggest that lipids can favorably assemble into a bilayer within the larger CALHM2 pore, but not within CALHM1, demonstrating the potential correlation between pore size, lipid accommodation and channel activity.

View Publication Page
03/19/14 | Structure and computational analysis of a novel protein with metallopeptidase-like and circularly permuted winged-helix-turn-helix domains reveals a possible role in modified polysaccharide biosynthesis.
Das D, Murzin AG, Rawlings ND, Finn RD, Coggill P, Bateman A, Godzik A, Aravind L
BMC Bioinformatics. 2014 Mar 19;15:75. doi: 10.1186/1471-2105-15-75

BACKGROUND: CA_C2195 from Clostridium acetobutylicum is a protein of unknown function. Sequence analysis predicted that part of the protein contained a metallopeptidase-related domain. There are over 200 homologs of similar size in large sequence databases such as UniProt, with pairwise sequence identities in the range of ~40-60%. CA_C2195 was chosen for crystal structure determination for structure-based function annotation of novel protein sequence space.

RESULTS: The structure confirmed that CA_C2195 contained an N-terminal metallopeptidase-like domain. The structure revealed two extra domains: an α+β domain inserted in the metallopeptidase-like domain and a C-terminal circularly permuted winged-helix-turn-helix domain.

CONCLUSIONS: Based on our sequence and structural analyses using the crystal structure of CA_C2195 we provide a view into the possible functions of the protein. From contextual information from gene-neighborhood analysis, we propose that rather than being a peptidase, CA_C2195 and its homologs might play a role in biosynthesis of a modified cell-surface carbohydrate in conjunction with several sugar-modification enzymes. These results provide the groundwork for the experimental verification of the function.

View Publication Page
Grigorieff Lab
10/06/15 | Structure and conformational states of the bovine mitochondrial ATP synthase by cryo-EM.
Zhou A, Rohou A, Schep DG, Bason JV, Montgomery MG, Walker JE, Grigorieff N, Rubinstein JL
eLife. 2015 Oct 06;4:. doi: 10.7554/eLife.10180

Adenosine triphosphate (ATP), the chemical energy currency of biology, is synthesized in eukaryotic cells primarily by the mitochondrial ATP synthase. ATP synthases operate by a rotary catalytic mechanism where proton translocation through the membrane-inserted FO region is coupled to ATP synthesis in the catalytic F1 region via rotation of a central rotor subcomplex. We report here single particle electron cryomicroscopy (cryo-EM) analysis of the bovine mitochondrial ATP synthase. Combining cryo-EM data with bioinformatic analysis allowed us to determine the fold of the a subunit, suggesting a proton translocation path through the FO region that involves both the a and b subunits. 3D classification of images revealed seven distinct states of the enzyme that show different modes of bending and twisting in the intact ATP synthase. Rotational fluctuations of the c8-ring within the FO region support a Brownian ratchet mechanism for proton-translocation-driven rotation in ATP synthases.

View Publication Page
Tjian Lab
06/04/04 | Structure and function of CRSP/Med2; a promoter-selective transcriptional coactivator complex.
Taatjes DJ, Tjian R
Molecular Cell. 2004 Jun 4;14(5):675-83. doi: 10.1073/pnas.1100640108

The multi-subunit, human CRSP coactivator-also known as Mediator (Med)-regulates transcription by mediating signals between enhancer-bound factors (activators) and the core transcriptional machinery. Interestingly, different activators are known to bind distinct subunits within the CRSP/Med complex. We have isolated a stable, endogenous CRSP/Med complex (CRSP/Med2) that specifically lacks both the Med220 and the Med70 subunits. The three-dimensional structure of CRSP/Med2 was determined to 31 A resolution using electron microscopy and single-particle reconstruction techniques. Despite lacking both Med220 and Med70, CRSP/Med2 displays potent, activator-dependent transcriptional coactivator function in response to VP16, Sp1, and Sp1/SREBP-1a in vitro using chromatin templates. However, CRSP/Med2 is unable to potentiate activated transcription from a vitamin D receptor-responsive promoter, which requires interaction with Med220 for coactivator recruitment, whereas VDR-directed activation by CRSP/Med occurs normally. Thus, it appears that CRSP/Med may be regulated by a combinatorial assembly mechanism that allows promoter-selective function upon exchange of specific coactivator targets.

View Publication Page
12/21/21 | Structure and RNA template requirements of RNA-DEPENDENT RNA POLYMERASE 2.
Fukudome A, Singh J, Mishra V, Reddem E, Martinez-Marquez F, Wenzel S, Yan R, Shiozaki M, Yu Z, Wang JC, Takagi Y, Pikaard CS
Proceedings of the National Academy of Sciences of the U.S.A.. 2021 Dec 21;118(51):. doi: 10.1073/pnas.2115899118

RNA-dependent RNA polymerases play essential roles in RNA-mediated gene silencing in eukaryotes. In , RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) physically interacts with DNA-dependent NUCLEAR RNA POLYMERASE IV (Pol IV) and their activities are tightly coupled, with Pol IV transcriptional arrest, induced by the nontemplate DNA strand, somehow enabling RDR2 to engage Pol IV transcripts and generate double-stranded RNAs. The double-stranded RNAs are then released from the Pol IV-RDR2 complex and diced into short-interfering RNAs that guide RNA-directed DNA methylation and silencing. Here we report the structure of full-length RDR2, at an overall resolution of 3.1 Å, determined by cryoelectron microscopy. The N-terminal region contains an RNA-recognition motif adjacent to a positively charged channel that leads to a catalytic center with striking structural homology to the catalytic centers of multisubunit DNA-dependent RNA polymerases. We show that RDR2 initiates 1 to 2 nt internal to the 3' ends of its templates and can transcribe the RNA of an RNA/DNA hybrid, provided that 9 or more nucleotides are unpaired at the RNA's 3' end. Using a nucleic acid configuration that mimics the arrangement of RNA and DNA strands upon Pol IV transcriptional arrest, we show that displacement of the RNA 3' end occurs as the DNA template and nontemplate strands reanneal, enabling RDR2 transcription. These results suggest a model in which Pol IV arrest and backtracking displaces the RNA 3' end as the DNA strands reanneal, allowing RDR2 to engage the RNA and synthesize the complementary strand.

View Publication Page
07/28/17 | Structure and topology around the cleavage site regulate post-translational cleavage of the HIV-1 gp160 signal peptide.
Snapp EL, McCaul N, Quandte M, Cabartova Z, Bontjer I, Källgren C, Nilsson I, Land A, von Heijne G, Sanders RW, Braakman I
eLife. 2017 Jul 28;6:. doi: 10.7554/eLife.26067

Like all other secretory proteins, the HIV-1 envelope glycoprotein gp160, is targeted to the endoplasmic reticulum (ER) by its signal peptide during synthesis. Proper gp160 folding in the ER requires core glycosylation, disulfide-bond formation and proline isomerization. Signal-peptide cleavage occurs only late after gp160 chain termination and is dependent on folding of the soluble subunit gp120 to a near-native conformation. We here detail the mechanism by which co-translational signal-peptide cleavage is prevented. Conserved residues from the signal peptide and residues downstream of the canonical cleavage site form an extended alpha-helix in the ER membrane that covers the cleavage site, thus preventing cleavage. A point mutation in the signal peptide breaks the alpha helix allowing co-translational cleavage. We demonstrate that postponed cleavage of gp160 enhances functional folding of the molecule. The change to early cleavage results in decreased viral fitness compared to wild-type HIV.

View Publication Page
Gonen Lab
07/15/15 | Structure of a designed tetrahedral protein assembly variant engineered to have improved soluble expression.
Bale JB, Park RU, Liu Y, Gonen S, Gonen T, Cascio D, King NP, Yeates TO, Baker D
Protein Science. 2015 Jul 15;24(10):1695-701. doi: 10.1002/pro.2748

We recently reported the development of a computational method for the design of co-assembling, multi-component protein nanomaterials. While four such materials were validated at high-resolution by X-ray crystallography, low yield of soluble protein prevented X-ray structure determination of a fifth designed material, T33-09. Here we report the design and crystal structure of T33-31, a variant of T33-09 with improved soluble yield resulting from redesign efforts focused on mutating solvent-exposed side chains to charged amino acids. The structure is found to match the computational design model with atomic-level accuracy, providing further validation of the design approach and demonstrating a simple and potentially general means of improving the yield of designed protein nanomaterials. This article is protected by copyright. All rights reserved.

View Publication Page
Grigorieff Lab
05/25/16 | Structure of a Holliday junction complex reveals mechanisms governing a highly regulated DNA transaction.
Laxmikanthan G, Xu C, Brilot AF, Warren D, Steele L, Seah N, Tong W, Grigorieff N, Landy A, Van Duyne GD
eLife. 2016 May 25;5:. doi: 10.7554/eLife.14313

The molecular machinery responsible for DNA expression, recombination, and compaction has been difficult to visualize as functionally complete entities due to their combinatorial and structural complexity. We report here the structure of the intact functional assembly responsible for regulating and executing a site-specific DNA recombination reaction. The assembly is a 240-bp Holliday junction (HJ) bound specifically by 11 protein subunits. This higher-order complex is a key intermediate in the tightly regulated pathway for the excision of bacteriophage λ viral DNA out of the E. coli host chromosome, an extensively studied paradigmatic model system for the regulated rearrangement of DNA. Our results provide a structural basis for pre-existing data describing the excisive and integrative recombination pathways, and they help explain their regulation.

View Publication Page
12/26/19 | Structure of an endosomal signaling GPCR-G protein-β-arrestin megacomplex.
Nguyen AH, Thomsen AR, Cahill TJ, Huang R, Huang L, Marcink T, Clarke OB, Heissel S, Masoudi A, Ben-Hail D, Samaan F, Dandey VP, Tan YZ, Hong C, Mahoney JP, Triest S, Little J, Chen X, Sunahara R, Steyaert J, Molina H, Yu Z, des Georges A, Lefkowitz RJ
Nature Structural and Molecular Biology. 2019 Dec 26;26(12):1123-1131. doi: 10.1038/s41594-019-0330-y

Classically, G-protein-coupled receptors (GPCRs) are thought to activate G protein from the plasma membrane and are subsequently desensitized by β-arrestin (β-arr). However, some GPCRs continue to signal through G protein from internalized compartments, mediated by a GPCR-G protein-β-arr 'megaplex'. Nevertheless, the molecular architecture of the megaplex remains unknown. Here, we present its cryo-electron microscopy structure, which shows simultaneous engagement of human G protein and bovine β-arr to the core and phosphorylated tail, respectively, of a single active human chimeric β-adrenergic receptor with the C-terminal tail of the arginine vasopressin type 2 receptor (βVR). All three components adopt their canonical active conformations, suggesting that a single megaplex GPCR is capable of simultaneously activating G protein and β-arr. Our findings provide a structural basis for GPCR-mediated sustained internalized G protein signaling.

View Publication Page
Gonen Lab
10/17/14 | Structure of catalase determined by MicroED.
Nannenga BL, Shi D, Hattne J, Reyes FE, Gonen T
eLife. 2014 Oct 17;3:e03600. doi: 10.7554/eLife.03600

MicroED is a recently developed method that uses electron diffraction for structure determination from very small three-dimensional crystals of biological material. Previously we used a series of still diffraction patterns to determine the structure of lysozyme at 2.9 Å resolution with MicroED (Shi et al., 2013). Here we present the structure of bovine liver catalase determined from a single crystal at 3.2 Å resolution by MicroED. The data were collected by continuous rotation of the sample under constant exposure and were processed and refined using standard programs for X-ray crystallography. The ability of MicroED to determine the structure of bovine liver catalase, a protein that has long resisted atomic analysis by traditional electron crystallography, demonstrates the potential of this method for structure determination.

View Publication Page