Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

4106 Publications

Showing 3421-3430 of 4106 results
10/12/22 | Structure of the OMEGA nickase IsrB in complex with ωRNA and target DNA.
Hirano S, Kappel K, Altae-Tran H, Faure G, Wilkinson ME, Kannan S, Demircioglu FE, Yan R, Shiozaki M, Yu Z, Makarova KS, Koonin EV, Macrae RK, Zhang F
Nature. 2022 Oct 12;610(7932):575-581. doi: 10.1038/s41586-022-05324-6

RNA-guided systems, such as CRISPR-Cas, combine programmable substrate recognition with enzymatic function, a combination that has been used advantageously to develop powerful molecular technologies. Structural studies of these systems have illuminated how the RNA and protein jointly recognize and cleave their substrates, guiding rational engineering for further technology development. Recent work identified a new class of RNA-guided systems, termed OMEGA, which include IscB, the likely ancestor of Cas9, and the nickase IsrB, a homologue of IscB lacking the HNH nuclease domain. IsrB consists of only around 350 amino acids, but its small size is counterbalanced by a relatively large RNA guide (roughly 300-nt ωRNA). Here, we report the cryogenic-electron microscopy structure of Desulfovirgula thermocuniculi IsrB (DtIsrB) in complex with its cognate ωRNA and a target DNA. We find the overall structure of the IsrB protein shares a common scaffold with Cas9. In contrast to Cas9, however, which uses a recognition (REC) lobe to facilitate target selection, IsrB relies on its ωRNA, part of which forms an intricate ternary structure positioned analogously to REC. Structural analyses of IsrB and its ωRNA as well as comparisons to other RNA-guided systems highlight the functional interplay between protein and RNA, advancing our understanding of the biology and evolution of these diverse systems.

View Publication Page
12/14/20 | Structure of the radial spoke head and insights into its role in mechanoregulation of ciliary beating.
Grossman-Haham I, Coudray N, Yu Z, Wang F, Zhang N, Bhabha G, Vale RD
Nature Structural Molecular Biology. 2020 Dec 14;28(1):20-28. doi: 10.1038/s41594-020-00519-9

Motile cilia power cell locomotion and drive extracellular fluid flow by propagating bending waves from their base to tip. The coordinated bending of cilia requires mechanoregulation by the radial spoke (RS) protein complexes and the microtubule central pair (CP). Despite their importance for ciliary motility across eukaryotes, the molecular function of the RSs is unknown. Here, we reconstituted the Chlamydomonas reinhardtii RS head that abuts the CP and determined its structure using single-particle cryo-EM to 3.1-Å resolution, revealing a flat, negatively charged surface supported by a rigid core of tightly intertwined proteins. Mutations in this core, corresponding to those involved in human ciliopathies, compromised the stability of the recombinant complex, providing a molecular basis for disease. Partially reversing the negative charge on the RS surface impaired motility in C. reinhardtii. We propose that the RS-head architecture is well-suited for mechanoregulation of ciliary beating through physical collisions with the CP.

View Publication Page
Gonen Lab
09/09/15 | Structure of the toxic core of α-synuclein from invisible crystals.
Rodriguez JA, Ivanova MI, Sawaya MR, Cascio D, Reyes FE, Shi D, Sangwan S, Guenther EL, Johnson LM, Zhang M, Jiang L, Arbing MA, Nannenga BL, Hattne J, Whitelegge J, Brewster AS, Messerschmidt M, Boutet S, Sauter NK, Gonen T, Eisenberg DS
Nature. 2015 Sep 9;525(7570):486-90. doi: 10.1038/nature15368

The protein α-synuclein is the main component of Lewy bodies, the neuron-associated aggregates seen in Parkinson disease and other neurodegenerative pathologies. An 11-residue segment, which we term NACore, appears to be responsible for amyloid formation and cytotoxicity of human α-synuclein. Here we describe crystals of NACore that have dimensions smaller than the wavelength of visible light and thus are invisible by optical microscopy. As the crystals are thousands of times too small for structure determination by synchrotron X-ray diffraction, we use micro-electron diffraction to determine the structure at atomic resolution. The 1.4 Å resolution structure demonstrates that this method can determine previously unknown protein structures and here yields, to our knowledge, the highest resolution achieved by any cryo-electron microscopy method to date. The structure exhibits protofibrils built of pairs of face-to-face β-sheets. X-ray fibre diffraction patterns show the similarity of NACore to toxic fibrils of full-length α-synuclein. The NACore structure, together with that of a second segment, inspires a model for most of the ordered portion of the toxic, full-length α-synuclein fibril, presenting opportunities for the design of inhibitors of α-synuclein fibrils.

View Publication Page
Grigorieff Lab
12/09/16 | Structure of the transporter associated with antigen processing trapped by herpes simplex virus.
Oldham ML, Grigorieff N, Chen J
eLife. 2016 Dec 09;5:. doi: 10.7554/eLife.21829

The transporter associated with antigen processing (TAP) is an ATP-binding cassette (ABC) transporter essential to cellular immunity against viral infection. Some persistent viruses have evolved strategies to inhibit TAP so that they may go undetected by the immune system. The herpes simplex virus for example evades immune surveillance by blocking peptide transport with a small viral protein ICP47. In this study, we determined the structure of human TAP bound to ICP47 by electron cryo-microscopy (cryo-EM) to 4.0 Å. The structure shows that ICP47 traps TAP in an inactive conformation distinct from the normal transport cycle. The specificity and potency of ICP47 inhibition result from contacts between the tip of the helical hairpin and the apex of the transmembrane cavity. This work provides a clear molecular description of immune evasion by a persistent virus. It also establishes the molecular structure of TAP to facilitate mechanistic studies of the antigen presentation process.

View Publication Page
Grigorieff Lab
01/07/20 | Structure of the vesicular stomatitis virus L protein in complex with Its phosphoprotein cofactor.
Jenni S, Bloyet L, Diaz-Avalos R, Liang B, Whelan SP, Grigorieff N, Harrison SC
Cell Reports. 2020 Jan 07;30(1):53-60.e5. doi: 10.1016/j.celrep.2019.12.024

The large (L) proteins of non-segmented, negative-strand RNA viruses are multifunctional enzymes that produce capped, methylated, and polyadenylated mRNA and replicate the viral genome. A phosphoprotein (P), required for efficient RNA-dependent RNA polymerization from the viral ribonucleoprotein (RNP) template, regulates the function and conformation of the L protein. We report the structure of vesicular stomatitis virus L in complex with its P cofactor determined by electron cryomicroscopy at 3.0 Å resolution, enabling us to visualize bound segments of P. The contacts of three P segments with multiple L domains show how P induces a closed, compact, initiation-competent conformation. Binding of P to L positions its N-terminal domain adjacent to a putative RNA exit channel for efficient encapsidation of newly synthesized genomes with the nucleoprotein and orients its C-terminal domain to interact with an RNP template. The model shows that a conserved tryptophan in the priming loop can support the initiating 5' nucleotide.

View Publication Page
04/12/13 | Structure, activity, and substrate selectivity of the Orf6 thioesterase from Photobacterium profundum.
Rodríguez-Guilbe M, Oyola-Robles D, Schreiter ER, Baerga-Ortiz A
Journal of Biological Chemistry. 2013 Apr 12;288(15):10841-8. doi: 10.1074/jbc.M112.446765

Thioesterase activity is typically required for the release of products from polyketide synthase enzymes, but no such enzyme has been characterized in deep-sea bacteria associated with the production of polyunsaturated fatty acids. In this work, we have expressed and purified the Orf6 thioesterase from Photobacterium profundum. Enzyme assays revealed that Orf6 has a higher specific activity toward long-chain fatty acyl-CoA substrates (palmitoyl-CoA and eicosapentaenoyl-CoA) than toward short-chain or aromatic acyl-CoA substrates. We determined a high resolution (1.05 Å) structure of Orf6 that reveals a hotdog hydrolase fold arranged as a dimer of dimers. The putative active site of this structure is occupied by additional electron density not accounted for by the protein sequence, consistent with the presence of an elongated compound. A second crystal structure (1.40 Å) was obtained from a crystal that was grown in the presence of Mg(2+), which reveals the presence of a binding site for divalent cations at a crystal contact. The Mg(2+)-bound structure shows localized conformational changes (root mean square deviation of 1.63 Å), and its active site is unoccupied, suggesting a mechanism to open the active site for substrate entry or product release. These findings reveal a new thioesterase enzyme with a preference for long-chain CoA substrates in a deep-sea bacterium whose potential range of applications includes bioremediation and the production of biofuels.

View Publication Page
Tjian Lab
02/08/02 | Structure, function, and activator-induced conformations of the CRSP coactivator.
Taatjes DJ, Näär AM, Andel F, Nogales E, Tjian R
Science. 2002 Feb 8;295(5557):1058-62. doi: 10.1073/pnas.1100640108

The human cofactor complexes ARC (activator-recruited cofactor) and CRSP (cofactor required for Sp1 activation) mediate activator-dependent transcription in vitro. Although these complexes share several common subunits, their structural and functional relationships remain unknown. Here, we report that affinity-purified ARC consists of two distinct multisubunit complexes: a larger complex, denoted ARC-L, and a smaller coactivator, CRSP. Reconstituted in vitro transcription with biochemically separated ARC-L and CRSP reveals differential cofactor functions. The ARC-L complex is transcriptionally inactive, whereas the CRSP complex is highly active. Structural determination by electron microscopy (EM) and three-dimensional reconstruction indicate substantial differences in size and shape between ARC-L and CRSP. Moreover, EM analysis of independently derived CRSP complexes reveals distinct conformations induced by different activators. These results suggest that CRSP may potentiate transcription via specific activator-induced conformational changes.

View Publication Page
10/24/24 | Structure, interaction, and nervous connectivity of beta cell primary cilia
Andreas Müller , Nikolai Klena , Song Pang , Leticia Elizabeth Galicia Garcia , Davud Sulaymankhil , Oleksandra Topcheva , Monika Seliskar , Hassan Mziaut , Eyke Schöniger , Daniela Friedland , Nicole Kipke , Susanne Kretschmar , Carla Münster , Jürgen Weitz , Marius Distler , Thomas Kurth , Deborah Schmidt , Harald F. Hess , C. Shan Xu , Gaia Pigino , Michele Solimena
Nat Commun. 2024 Oct 24;15(1):9168. doi: 10.1038/s41467-024-53348-5

Primary cilia are sensory organelles present in many cell types, partaking in various signaling processes. Primary cilia of pancreatic beta cells play pivotal roles in paracrine signaling and their dysfunction is linked to diabetes. Yet, the structural basis for their functions is unclear. We present three-dimensional reconstructions of beta cell primary cilia by electron and expansion microscopy. These cilia are spatially confined within deep ciliary pockets or narrow spaces between cells, lack motility components and display an unstructured axoneme organization. Furthermore, we observe a plethora of beta cell cilia-cilia and cilia-cell interactions with other islet and non-islet cells. Most remarkably, we have identified and characterized axo-ciliary synapses between beta cell cilia and the cholinergic islet innervation. These findings highlight the beta cell cilia's role in islet connectivity, pointing at their function in integrating islet intrinsic and extrinsic signals and contribute to understanding their significance in health and diabetes.

View Publication Page
Gonen Lab
11/20/17 | Structure-based inhibitors of tau aggregation.
Seidler PM, Boyer DR, Rodriguez JA, Sawaya MR, Cascio D, Murray K, Gonen T, Eisenberg DS
Nature Chemistry. 2017 Nov 20:. doi: 10.1038/nchem.2889

Aggregated tau protein is associated with over 20 neurological disorders, which include Alzheimer's disease. Previous work has shown that tau's sequence segments VQIINK and VQIVYK drive its aggregation, but inhibitors based on the structure of the VQIVYK segment only partially inhibit full-length tau aggregation and are ineffective at inhibiting seeding by full-length fibrils. Here we show that the VQIINK segment is the more powerful driver of tau aggregation. Two structures of this segment determined by the cryo-electron microscopy method micro-electron diffraction explain its dominant influence on tau aggregation. Of practical significance, the structures lead to the design of inhibitors that not only inhibit tau aggregation but also inhibit the ability of exogenous full-length tau fibrils to seed intracellular tau in HEK293 biosensor cells into amyloid. We also raise the possibility that the two VQIINK structures represent amyloid polymorphs of tau that may account for a subset of prion-like strains of tau.

View Publication Page
Gonen Lab
02/01/18 | Structure-based inhibitors of tau aggregation.
Seidler PM, Boyer DR, Rodriguez JA, Sawaya MR, Cascio D, Murray K, Gonen T, Eisenberg DS
Nature Chemistry. 2018 Feb;10(2):170-176. doi: 10.1038/nchem.2889

Aggregated tau protein is associated with over 20 neurological disorders, which include Alzheimer's disease. Previous work has shown that tau's sequence segments VQIINK and VQIVYK drive its aggregation, but inhibitors based on the structure of the VQIVYK segment only partially inhibit full-length tau aggregation and are ineffective at inhibiting seeding by full-length fibrils. Here we show that the VQIINK segment is the more powerful driver of tau aggregation. Two structures of this segment determined by the cryo-electron microscopy method micro-electron diffraction explain its dominant influence on tau aggregation. Of practical significance, the structures lead to the design of inhibitors that not only inhibit tau aggregation but also inhibit the ability of exogenous full-length tau fibrils to seed intracellular tau in HEK293 biosensor cells into amyloid. We also raise the possibility that the two VQIINK structures represent amyloid polymorphs of tau that may account for a subset of prion-like strains of tau.

View Publication Page