Filter
Associated Lab
- Aso Lab (1) Apply Aso Lab filter
- Betzig Lab (6) Apply Betzig Lab filter
- Clapham Lab (3) Apply Clapham Lab filter
- Espinosa Medina Lab (1) Apply Espinosa Medina Lab filter
- Feliciano Lab (4) Apply Feliciano Lab filter
- Funke Lab (2) Apply Funke Lab filter
- Harris Lab (1) Apply Harris Lab filter
- Hess Lab (16) Apply Hess Lab filter
- Lavis Lab (7) Apply Lavis Lab filter
- Lippincott-Schwartz Lab (167) Apply Lippincott-Schwartz Lab filter
- Liu (Zhe) Lab (12) Apply Liu (Zhe) Lab filter
- Rubin Lab (1) Apply Rubin Lab filter
- Saalfeld Lab (4) Apply Saalfeld Lab filter
- Singer Lab (1) Apply Singer Lab filter
Associated Project Team
Publication Date
- 2025 (6) Apply 2025 filter
- 2024 (11) Apply 2024 filter
- 2023 (8) Apply 2023 filter
- 2022 (7) Apply 2022 filter
- 2021 (14) Apply 2021 filter
- 2020 (8) Apply 2020 filter
- 2019 (12) Apply 2019 filter
- 2018 (11) Apply 2018 filter
- 2017 (11) Apply 2017 filter
- 2016 (9) Apply 2016 filter
- 2015 (4) Apply 2015 filter
- 2014 (12) Apply 2014 filter
- 2013 (11) Apply 2013 filter
- 2012 (12) Apply 2012 filter
- 2011 (18) Apply 2011 filter
- 2010 (12) Apply 2010 filter
- 2007 (1) Apply 2007 filter
Type of Publication
167 Publications
Showing 121-130 of 167 resultsRab proteins are important regulators of insulin-stimulated GLUT4 translocation to the plasma membrane (PM), but the precise steps in GLUT4 trafficking modulated by particular Rab proteins remain unclear. Here, we systematically investigate the involvement of Rab proteins in GLUT4 trafficking, focusing on Rab proteins directly mediating GLUT4 storage vesicle (GSV) delivery to the PM. Using dual-color total internal reflection fluorescence (TIRF) microscopy and an insulin-responsive aminopeptidase (IRAP)-pHluorin fusion assay, we demonstrated that Rab10 directly facilitated GSV translocation to and docking at the PM. Rab14 mediated GLUT4 delivery to the PM via endosomal compartments containing transferrin receptor (TfR), whereas Rab4A, Rab4B, and Rab8A recycled GLUT4 through the endosomal system. Myosin-Va associated with GSVs by interacting with Rab10, positioning peripherally recruited GSVs for ultimate fusion. Thus, multiple Rab proteins regulate the trafficking of GLUT4, with Rab10 coordinating with myosin-Va to mediate the final steps of insulin-stimulated GSV translocation to the PM.
The glucose transporter, GLUT4, redistributes to the plasma membrane (PM) upon insulin stimulation, but also recycles through endosomal compartments. Different Rab proteins control these transport itineraries of GLUT4. However, the specific roles played by different Rab proteins in GLUT4 trafficking has been difficult to assess, primarily due to the complexity of endomembrane organization and trafficking. To address this problem, we recently performed advanced live cell imaging using total internal reflection fluorescence (TIRF) microscopy, which images objects ~150 nm from the PM, directly visualizing GLUT4 trafficking in response to insulin stimulation. Using IRAP-pHluorin to selectively label GSVs undergoing PM fusion in response to insulin, we identified Rab10 as the only Rab protein that binds this compartment. Rab14 was found to label transferrin-positive, endosomal compartments containing GLUT4. These also could fuse with the PM in response to insulin, albeit more slowly. Several other Rab proteins, including Rab4A, 4B and 8A, were found to mediate GLUT4 intra-endosomal recycling, serving to internalize surface-bound GLUT4 into endosomal compartments for ultimate delivery to GSVs. Thus, multiple Rab proteins regulate the circulation of GLUT4 molecules within the endomembrane system, maintaining optimal insulin responsiveness within cells.
Rhodamine dyes exist in equilibrium between a fluorescent zwitterion and a nonfluorescent lactone. Tuning this equilibrium toward the nonfluorescent lactone form can improve cell-permeability and allow creation of "fluorogenic" compounds-ligands that shift to the fluorescent zwitterion upon binding a biomolecular target. An archetype fluorogenic dye is the far-red tetramethyl-Si-rhodamine (SiR), which has been used to create exceptionally useful labels for advanced microscopy. Here, we develop a quantitative framework for the development of new fluorogenic dyes, determining that the lactone-zwitterion equilibrium constant () is sufficient to predict fluorogenicity. This rubric emerged from our analysis of known fluorophores and yielded new fluorescent and fluorogenic labels with improved performance in cellular imaging experiments. We then designed a novel fluorophore-Janelia Fluor 526 (JF)-with SiR-like properties but shorter fluorescence excitation and emission wavelengths. JF is a versatile scaffold for fluorogenic probes including ligands for self-labeling tags, stains for endogenous structures, and spontaneously blinking labels for super-resolution immunofluorescence. JF constitutes a new label for advanced microscopy experiments, and our quantitative framework will enable the rational design of other fluorogenic probes for bioimaging.
Green-to-red photoconvertible fluorescent proteins (pcFPs) are powerful tools for super-resolution localization microscopy and protein tagging. Recently, they have been found to undergo efficient photoconversion not only by the traditional 400-nm illumination but also by an alternative method termed primed conversion, employing dual wavelength illumination with blue and far-red/near-infrared light. Primed conversion has been reported only for Dendra2 and its mechanism has remained elusive. Here, we uncover the molecular mechanism of primed conversion by reporting the intermediate "primed" state to be a triplet dark state formed by intersystem crossing. We show that formation of this state can be influenced by the introduction of serine or threonine at sequence position 69 (Eos notation) and use this knowledge to create "pr"- (for primed convertible) variants of most known green-to-red pcFPs.
The goal when imaging bioprocesses with optical microscopy is to acquire the most spatiotemporal information with the least invasiveness. Deep neural networks have substantially improved optical microscopy, including image super-resolution and restoration, but still have substantial potential for artifacts. In this study, we developed rationalized deep learning (rDL) for structured illumination microscopy and lattice light sheet microscopy (LLSM) by incorporating prior knowledge of illumination patterns and, thereby, rationally guiding the network to denoise raw images. Here we demonstrate that rDL structured illumination microscopy eliminates spectral bias-induced resolution degradation and reduces model uncertainty by five-fold, improving the super-resolution information by more than ten-fold over other computational approaches. Moreover, rDL applied to LLSM enables self-supervised training by using the spatial or temporal continuity of noisy data itself, yielding results similar to those of supervised methods. We demonstrate the utility of rDL by imaging the rapid kinetics of motile cilia, nucleolar protein condensation during light-sensitive mitosis and long-term interactions between membranous and membrane-less organelles.
AMP-activated protein kinase (AMPK), a cellular metabolic sensor, is essential in energy regulation and metabolism. Hepatocyte polarization during liver development and regeneration parallels increased metabolism. The current study investigates the effects of AMPK and its upstream activator LKB1 on polarity and bile canalicular network formation and maintenance in collagen sandwich cultures of rat hepatocytes. Immunostaining for the apical protein ABCB1 and the tight junction marker occludin demonstrated that canalicular network formation is sequential and is associated with activation of AMPK and LKB1. AMPK and LKB1 activators accelerated canalicular network formation. Inhibition of AMPK or LKB1 by dominant-negative AMPK or kinase-dead LKB1 constructs blocked canalicular network formation. AICAR and 2-deoxyglucose, which activate AMPK, circumvented the inhibitory effect of kinase-dead LKB1 on canalicular formation, indicating that AMPK directly affects canalicular network formation. After the canalicular network was formed, inhibition of AMPK and LKB1 by dominant-negative AMPK or kinase-dead LKB1 constructs resulted in loss of canalicular network, indicating that AMPK and LKB1 also participate in network maintenance. In addition, activation of AMPK and LKB1 prevented low-Ca(2+)-mediated disruption of the canalicular network and tight junctions. These studies reveal that AMPK and its upstream kinase, LKB1, regulate canalicular network formation and maintenance.
Several aquaporin (AQP) water channels are short-term regulated by the messenger cyclic adenosine monophosphate (cAMP), including AQP3. Bulk measurements show that cAMP can change diffusive properties of AQP3; however, it remains unknown how elevated cAMP affects AQP3 organization at the nanoscale. Here we analyzed AQP3 nano-organization following cAMP stimulation using photoactivated localization microscopy (PALM) of fixed cells combined with pair correlation analysis. Moreover, in live cells, we combined PALM acquisitions of single fluorophores with single-particle tracking (spt-PALM). These analyses revealed that AQP3 tends to cluster and that the diffusive mobility is confined to nanodomains with radii of ∼150 nm. This domain size increases by ∼30% upon elevation of cAMP, which, however, is not accompanied by a significant increase in the confined diffusion coefficient. This regulation of AQP3 organization at the nanoscale may be important for understanding the mechanisms of water AQP3-mediated water transport across plasma membranes.
Retroviruses selectively incorporate a specific subset of host cell proteins and lipids into their outer membrane when they bud out from the host plasma membrane. This specialized viral membrane composition is critical for both viral survivability and infectivity. Here, we review recent findings from live cell imaging of single virus assembly demonstrating that proteins and lipids sort into the HIV retroviral membrane by a mechanism of lipid-based phase partitioning. The findings showed that multimerizing HIV Gag at the assembly site creates a liquid-ordered lipid phase enriched in cholesterol and sphingolipids. Proteins with affinity for this specialized lipid environment partition into it, resulting in the selective incorporation of proteins into the nascent viral membrane. Building on this and other work in the field, we propose a model describing how HIV Gag induces phase separation of the viral assembly site through a mechanism involving transbilayer coupling of lipid acyl chains and membrane curvature changes. Similar phase-partitioning pathways in response to multimerizing structural proteins likely help sort proteins into the membranes of other budding structures within cells.
Long-distance RNA transport enables local protein synthesis at metabolically-active sites distant from the nucleus. This process ensures an appropriate spatial organization of proteins, vital to polarized cells such as neurons. Here, we present a mechanism for RNA transport in which RNA granules "hitchhike" on moving lysosomes. In vitro biophysical modeling, live-cell microscopy, and unbiased proximity labeling proteomics reveal that annexin A11 (ANXA11), an RNA granule-associated phosphoinositide-binding protein, acts as a molecular tether between RNA granules and lysosomes. ANXA11 possesses an N-terminal low complexity domain, facilitating its phase separation into membraneless RNA granules, and a C-terminal membrane binding domain, enabling interactions with lysosomes. RNA granule transport requires ANXA11, and amyotrophic lateral sclerosis (ALS)-associated mutations in ANXA11 impair RNA granule transport by disrupting their interactions with lysosomes. Thus, ANXA11 mediates neuronal RNA transport by tethering RNA granules to actively-transported lysosomes, performing a critical cellular function that is disrupted in ALS.
Neurons decentralize protein synthesis from the cell body to support the active metabolism of remote dendritic and axonal compartments. The neuronal RNA transport apparatus, composed of cis-acting RNA regulatory elements, neuronal transport granule proteins, and motor adaptor complexes, drives the long-distance RNA trafficking required for local protein synthesis. Over the past decade, advances in human genetics, subcellular biochemistry, and high-resolution imaging have implicated each member of the apparatus in several neurodegenerative diseases, establishing failed RNA transport and associated processes as a unifying pathomechanism. In this review, we deconstruct the RNA transport apparatus, exploring each constituent's role in RNA localization and illuminating their unique contributions to neurodegeneration.