Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
janelia7_blocks-janelia7_fake_breadcrumb | block
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

167 Publications

Showing 131-140 of 167 results
04/25/23 | Simultaneous photoactivation and high-speed structural tracking reveal diffusion-dominated motion in the endoplasmic reticulum
Matteo Dora , Christopher J. Obara , Tim Abel , Jennifer Lippincott-Schwarz , David Holcman
bioRxiv. 2023 Apr 25:. doi: 10.1101/2023.04.23.537908

The endoplasmic reticulum (ER) is a structurally complex, membrane-enclosed compartment that stretches from the nuclear envelope to the extreme periphery of eukaryotic cells. The organelle is crucial for numerous distinct cellular processes, but how these processes are spatially regulated within the structure is unclear. Traditional imaging-based approaches to understanding protein dynamics within the organelle are limited by the convoluted structure and rapid movement of molecular components. Here, we introduce a combinatorial imaging and machine learning-assisted image analysis approach to track the motion of photoactivated proteins within the ER of live cells. We find that simultaneous knowledge of the underlying ER structure is required to accurately analyze fluorescently-tagged protein redistribution, and after appropriate structural calibration we see all proteins assayed show signatures of Brownian diffusion-dominated motion over micron spatial scales. Remarkably, we find that in some cells the ER structure can be explored in a highly asymmetric manner, likely as a result of uneven connectivity within the organelle. This remains true independently of the size, topology, or folding state of the fluorescently-tagged molecules, suggesting a potential role for ER connectivity in driving spatially regulated biology in eukaryotes.

View Publication Page
01/01/10 | Single-particle tracking photoactivated localization microscopy for mapping single-molecule dynamics.
Manley S, Gillette JM, Lippincott-Schwartz J
Methods in enzymology. 2010;475:109-20. doi: 10.1016/S0076-6879(10)75005-9

Recent developments in single-molecule localization techniques using photoactivatable fluorescent proteins have allowed the probing of single-molecule motion in a living cell with high specificity, millisecond time resolution, and nanometer spatial resolution. Analyzing the dynamics of individual molecules at high densities in this manner promises to provide new insights into the mechanisms of many biological processes, including protein heterogeneity in the plasma membrane, the dynamics of cytoskeletal flow, and clustering of receptor complexes in response to signaling cues. Here we describe the method of single-molecule tracking photoactivated localization microscopy (sptPALM) and discuss how its use can contribute to a quantitative understanding of fundamental cellular processes.

View Publication Page
12/08/16 | Sonic Hedgehog Pathway activation increases mitochondrial abundance and activity in hippocampal neurons.
Yao PJ, Manor U, Petralia RS, Brose RD, Wu RT, Ott C, Wang Y, Charnoff A, Lippincott-Schwartz J, Mattson MP
Molecular Biology of the Cell. 2016 Dec 08:. doi: 10.1091/mbc.E16-07-0553

Mitochondria are essential organelles whose biogenesis, structure, and function are regulated by many signaling pathways. In this study we present evidence that, in hippocampal neurons, activation of the Sonic hedgehog (Shh) signaling pathway impacts multiple aspects of mitochondria. Mitochondrial mass was increased significantly in neurons treated with Shh. Using biochemical and fluorescence imaging analyses, we show that Shh signaling activity reduces mitochondrial fission and promotes mitochondrial elongation, at least in part, via suppression of the mitochondrial fission protein dynamin-like GTPase Drp1. Mitochondria from Shh-treated neurons were more electron-dense as revealed by electron microscopy, and had higher membrane potential and respiratory activity. We further show that Shh protects neurons against a variety of stresses, including the mitochondrial poison rotenone, amyloid β-peptide, hydrogen peroxide, and high levels of glutamate. Collectively, our data suggest a link between Shh pathway activity and the physiological properties of mitochondria in hippocampal neurons.

View Publication Page
06/21/19 | Spastin tethers lipid droplets to peroxisomes and directs fatty acid trafficking through ESCRT-III.
Chang C, Weigel AV, Ioannou MS, Pasolli HA, Xu CS, Peale DR, Shtengel G, Freeman M, Hess HF, Blackstone C, Lippincott-Schwartz J
Journal of Cell Biology. 2019 Jun 21;218(8):2583-99. doi: 10.1101/544023

Lipid droplets (LDs) are neutral lipid storage organelles that transfer lipids to various organelles including peroxisomes. Here, we show that the hereditary spastic paraplegia protein M1 Spastin, a membrane-bound AAA ATPase found on LDs, coordinates fatty acid (FA) trafficking from LDs to peroxisomes through two inter-related mechanisms. First, M1 Spastin forms a tethering complex with peroxisomal ABCD1 to promote LD-peroxisome contact formation. Second, M1 Spastin recruits the membrane-shaping ESCRT-III proteins IST1 and CHMP1B to LDs via its MIT domain to facilitate LD-to-peroxisome FA trafficking, possibly through IST1 and CHMP1B modifying LD membrane morphology. Furthermore, M1 Spastin, IST1 and CHMP1B are all required to relieve LDs of lipid peroxidation. The roles of M1 Spastin in tethering LDs to peroxisomes and in recruiting ESCRT-III components to LD-peroxisome contact sites for FA trafficking may help explain the pathogenesis of diseases associated with defective FA metabolism in LDs and peroxisomes.

View Publication Page
09/27/10 | Starved cells use mitochondria for autophagosome biogenesis.
Rambold AS, Lippincott-Schwartz J
Cell cycle (Georgetown, Tex.). 2010 Sep 15;9(18):3633-4. doi: 10.4161/cc.9.18.13170
09/19/22 | Structural Diversity within the Endoplasmic Reticulum-From the Microscale to the Nanoscale.
Obara CJ, Moore AS, Lippincott-Schwartz J
Cold Spring Harbor Perspectives in Biology. 2022 Sep 19:. doi: 10.1101/cshperspect.a041259

The endoplasmic reticulum (ER) is a continuous, highly dynamic membrane compartment that is crucial for numerous basic cellular functions. The ER stretches from the nuclear envelope to the outer periphery of all living eukaryotic cells. This ubiquitous organelle shows remarkable structural complexity, adopting a range of shapes, curvatures, and length scales. Canonically, the ER is thought to be composed of two simple membrane elements: sheets and tubules. However, recent advances in superresolution light microscopy and three-dimensional electron microscopy have revealed an astounding diversity of nanoscale ER structures, greatly expanding our view of ER organization. In this review, we describe these diverse ER structures, focusing on what is known of their regulation and associated functions in mammalian cells.

View Publication Page
06/01/23 | Structural Diversity within the Endoplasmic Reticulum-From the Microscale to the Nanoscale.
Obara CJ, Moore AS, Lippincott-Schwartz J
Cold Spring Harbor Perspectives in Biology. 2023 Jun 01;15(6):. doi: 10.1101/cshperspect.a041259

The endoplasmic reticulum (ER) is a continuous, highly dynamic membrane compartment that is crucial for numerous basic cellular functions. The ER stretches from the nuclear envelope to the outer periphery of all living eukaryotic cells. This ubiquitous organelle shows remarkable structural complexity, adopting a range of shapes, curvatures, and length scales. Canonically, the ER is thought to be composed of two simple membrane elements: sheets and tubules. However, recent advances in superresolution light microscopy and three-dimensional electron microscopy have revealed an astounding diversity of nanoscale ER structures, greatly expanding our view of ER organization. In this review, we describe these diverse ER structures, focusing on what is known of their regulation and associated functions in mammalian cells.

View Publication Page
11/25/24 | Structural dynamics of human ribosomes in situ reconstructed by exhaustive high-resolution template matching.
Rickgauer JP, Choi H, Moore AS, Denk W, Lippincott-Schwartz J
Mol Cell. 2024 Nov 25:. doi: 10.1016/j.molcel.2024.11.003

Protein synthesis is central to life and requires the ribosome, which catalyzes the stepwise addition of amino acids to a polypeptide chain by undergoing a sequence of structural transformations. Here, we employed high-resolution template matching (HRTM) on cryoelectron microscopy (cryo-EM) images of directly cryofixed living cells to obtain a set of ribosomal configurations covering the entire elongation cycle, with each configuration occurring at its native abundance. HRTM's position and orientation precision and ability to detect small targets (∼300 kDa) made it possible to order these configurations along the reaction coordinate and to reconstruct molecular features of any configuration along the elongation cycle. Visualizing the cycle's structural dynamics by combining a sequence of >40 reconstructions into a 3D movie readily revealed component and ligand movements, some of them surprising, such as spring-like intramolecular motion, providing clues about the molecular mechanisms involved in some still mysterious steps during chain elongation.

View Publication Page
06/12/22 | Super-Resolution Imaging of Fas/CD95 Reorganization Induced by Membrane-Bound Fas Ligand Reveals Nanoscale Clustering Upstream of FADD Recruitment.
Frazzette N, Cruz AC, Wu X, Hammer JA, Lippincott-Schwartz J, Siegel RM, Sengupta P
Cells. 2022 Jun 12;11(12):. doi: 10.3390/cells11121908

Signaling through the TNF-family receptor Fas/CD95 can trigger apoptosis or non-apoptotic cellular responses and is essential for protection from autoimmunity. Receptor clustering has been observed following interaction with Fas ligand (FasL), but the stoichiometry of Fas, particularly when triggered by membrane-bound FasL, the only form of FasL competent at inducing programmed cell death, is not known. Here we used super-resolution microscopy to study the behavior of single molecules of Fas/CD95 on the plasma membrane after interaction of Fas with FasL on planar lipid bilayers. We observed rapid formation of Fas protein superclusters containing more than 20 receptors after interactions with membrane-bound FasL. Fluorescence correlation imaging demonstrated recruitment of FADD dependent on an intact Fas death domain, with lipid raft association playing a secondary role. Flow-cytometric FRET analysis confirmed these results, and also showed that some Fas clustering can occur in the absence of FADD and caspase-8. Point mutations in the Fas death domain associated with autoimmune lymphoproliferative syndrome (ALPS) completely disrupted Fas reorganization and FADD recruitment, confirming structure-based predictions of the critical role that these residues play in Fas-Fas and Fas-FADD interactions. Finally, we showed that induction of apoptosis correlated with the ability to form superclusters and recruit FADD.

View Publication Page
01/13/14 | Superresolution imaging of biological systems using photoactivated localization microscopy.
Sengupta P, Van Engelenburg SB, Lippincott-Schwartz J
Chemical reviews. 2014 Mar 26;114(6):3189-202. doi: 10.1021/cr400614m