Filter
Associated Lab
- Aso Lab (1) Apply Aso Lab filter
- Betzig Lab (6) Apply Betzig Lab filter
- Clapham Lab (3) Apply Clapham Lab filter
- Espinosa Medina Lab (1) Apply Espinosa Medina Lab filter
- Feliciano Lab (4) Apply Feliciano Lab filter
- Funke Lab (2) Apply Funke Lab filter
- Harris Lab (1) Apply Harris Lab filter
- Hess Lab (16) Apply Hess Lab filter
- Lavis Lab (7) Apply Lavis Lab filter
- Lippincott-Schwartz Lab (167) Apply Lippincott-Schwartz Lab filter
- Liu (Zhe) Lab (12) Apply Liu (Zhe) Lab filter
- Rubin Lab (1) Apply Rubin Lab filter
- Saalfeld Lab (4) Apply Saalfeld Lab filter
- Singer Lab (1) Apply Singer Lab filter
Associated Project Team
Publication Date
- 2025 (6) Apply 2025 filter
- 2024 (11) Apply 2024 filter
- 2023 (8) Apply 2023 filter
- 2022 (7) Apply 2022 filter
- 2021 (14) Apply 2021 filter
- 2020 (8) Apply 2020 filter
- 2019 (12) Apply 2019 filter
- 2018 (11) Apply 2018 filter
- 2017 (11) Apply 2017 filter
- 2016 (9) Apply 2016 filter
- 2015 (4) Apply 2015 filter
- 2014 (12) Apply 2014 filter
- 2013 (11) Apply 2013 filter
- 2012 (12) Apply 2012 filter
- 2011 (18) Apply 2011 filter
- 2010 (12) Apply 2010 filter
- 2007 (1) Apply 2007 filter
Type of Publication
167 Publications
Showing 151-160 of 167 resultsStarvation induces a protective process of self-cannibalization called autophagy that is thought to mediate nonselective degradation of cytoplasmic material. We recently reported that mitochondria escape autophagosomal degradation through extensive fusion into mitochondrial networks upon certain starvation conditions. The extent of mitochondrial elongation is dependent on the type of nutrient deprivation, with amino acid depletion having a particularly strong effect. Downregulation of the mitochondrial fission protein Drp1 was determined to be important in bringing about starvation-induced mitochondrial fusion. The formation of mitochondrial networks during nutrient depletion selectively blocked their autophagic degradation, presumably allowing cells to sustain efficient ATP production and thereby survive starvation.
Vimentin intermediate filaments (VIFs) form complex, tight-packed networks; due to this density, traditional ensemble labeling and imaging approaches cannot accurately discern single filament behavior. To address this, we introduce a sparse vimentin-SunTag labeling strategy to unambiguously visualize individual filament dynamics. This technique confirmed known long-range dynein and kinesin transport of peripheral VIFs and uncovered extensive bidirectional VIF motion within the perinuclear vimentin network, a region we had thought too densely bundled to permit such motility. To examine the nanoscale organization of perinuclear vimentin, we acquired high-resolution electron microscopy volumes of a vitreously frozen cell and reconstructed VIFs and microtubules within a 50 um3 window. Of 583 VIFs identified, most were integrated into long, semi-coherent bundles that fluctuated in width and filament packing density. Unexpectedly, VIFs displayed minimal local co-alignment with microtubules, save for sporadic cross-over sites that we predict facilitate cytoskeletal crosstalk. Overall, this work demonstrates single VIF dynamics and organization in the cellular milieu for the first time.
At the center of the secretory pathway, the Golgi complex ensures correct processing and sorting of cargos toward their final destination. Cargos are diverse in topology, function and destination. A remarkable feature of the Golgi complex is its ability to sort and process these diverse cargos destined for secretion, the cell surface, the lysosome, or retained within the secretory pathway. Just as these cargos are diverse so also are their sorting requirements and thus, their trafficking route. There is no one-size-fits-all sorting scheme in the Golgi. We propose a coexistence of models to reconcile these diverse needs. We review examples of differential sorting mediated by proteins and lipids. Additionally, we highlight recent technological developments that have potential to uncover new modes of transport.
Different multicellular organisms undergo cell-cell fusion to form functional syncytia that support specialized functions necessary for proper development and survival. For years, monitoring the structural consequences of this process using live-cell imaging has been challenging due to the unpredictable timing of cell fusion events in tissue systems. Here we present a triggered vesicular stomatitis virus G-protein (VSV-G)-mediated cell-cell fusion assay that can be used to synchronize fusion between cells. This allows the study of cellular changes that occur during cell fusion. The process is induced using a fast wash of low pH isotonic buffer, promoting the fusion of plasma membranes of two or more adjacent cells within seconds. This approach is suitable for studying mixing of small cytoplasmic molecules between fusing cells as well as changes in organelle distribution and dynamics. © 2018 by John Wiley & Sons, Inc.
Mitochondria are highly dynamic organelles that mediate essential cell functions such as apoptosis and cell-cycle control in addition to their role as efficient ATP generators. Mitochondrial morphology changes are tightly regulated, and their shape can shift between small, fragmented units and larger networks of elongated mitochondria. We demonstrate that mitochondrial elements become significantly elongated and interconnected shortly after nutrient depletion. This mitochondrial morphological shift depends on the type of starvation, with an additive effect observed when multiple nutrients are depleted simultaneously. We further show that starvation-induced mitochondrial elongation is mediated by down-regulation of dynamin-related protein 1 (Drp1) through modulation of two Drp1 phosphorylation sites, leading to unopposed mitochondrial fusion. Finally, we establish that mitochondrial tubulation upon nutrient deprivation protects mitochondria from autophagosomal degradation, which could permit mitochondria to maximize energy production and supply autophagosomal membranes during starvation.
A primary cilium is a membrane-bound extension from the cell surface that contains receptors for perceiving and transmitting signals that modulate cell state and activity. Primary cilia in the brain are less accessible than cilia on cultured cells or epithelial tissues because in the brain they protrude into a deep, dense network of glial and neuronal processes. Here, we investigated cilia frequency, internal structure, shape, and position in large, high-resolution transmission electron microscopy volumes of mouse primary visual cortex. Cilia extended from the cell bodies of nearly all excitatory and inhibitory neurons, astrocytes, and oligodendrocyte precursor cells (OPCs) but were absent from oligodendrocytes and microglia. Ultrastructural comparisons revealed that the base of the cilium and the microtubule organization differed between neurons and glia. Investigating cilia-proximal features revealed that many cilia were directly adjacent to synapses, suggesting that cilia are poised to encounter locally released signaling molecules. Our analysis indicated that synapse proximity is likely due to random encounters in the neuropil, with no evidence that cilia modulate synapse activity as would be expected in tetrapartite synapses. The observed cell class differences in proximity to synapses were largely due to differences in external cilia length. Many key structural features that differed between neuronal and glial cilia influenced both cilium placement and shape and, thus, exposure to processes and synapses outside the cilium. Together, the ultrastructure both within and around neuronal and glial cilia suggest differences in cilia formation and function across cell types in the brain.
The analysis of single particle trajectories plays an important role in elucidating dynamics within complex environments such as those found in living cells. However, the characterization of intracellular particle motion is often confounded by confinement of the particles within non-trivial subcellular geometries. Here, we focus specifically on the case of particles undergoing Brownian motion within a tubular network, as found in some cellular organelles. An unraveling algorithm is developed to uncouple particle motion from the confining network structure, allowing for an accurate extraction of the diffusion coefficient, as well as differentiating between Brownian and fractional Brownian dynamics. We validate the algorithm with simulated trajectories and then highlight its application to an example system: analyzing the motion of membrane proteins confined in the tubules of the peripheral endoplasmic reticulum in mammalian cells. We show that these proteins undergo diffusive motion with a well-characterized diffusivity. Our algorithm provides a generally applicable approach for disentangling geometric morphology and particle dynamics in networked architectures.
Vimentin intermediate filaments (VIFs) form complex, tightly packed networks; due to this density, traditional imaging approaches cannot discern single-filament behavior. To address this, we developed and validated a sparse vimentin-SunTag labeling strategy, enabling single-particle tracking of individual VIFs and providing a sensitive, unbiased, and quantitative method for measuring global VIF motility. Using this approach, we define the steady-state VIF motility rate, showing a constant ∼8% of VIFs undergo directed microtubule-based motion irrespective of subcellular location or local filament density. Significantly, our single-particle tracking approach revealed uncorrelated motion of individual VIFs within bundles, an observation seemingly at odds with conventional models of tightly cross-linked bundles. To address this, we acquired high-resolution focused ion beam scanning electron microscopy volumes of vitreously frozen cells and reconstructed three-dimensional VIF bundles, finding that they form only loosely organized, semi-coherent structures from which single VIFs frequently emerge to locally engage neighboring microtubules. Overall, this work demonstrates single VIF dynamics and organization in the cellular milieu for the first time. bioRxiv Preprint: https://doi.org/10.1101/2024.06.10.598346
Methods useful for exploring the formation and functions of primary cilia in living cells are described here. First, multiple protocols for visualizing solitary cilia that extend away from the cell body are described. Primary cilia collect, synthesize, and transmit information about the extracellular space into the cell body to promote critical cellular responses. Problems with cilia formation or function can lead to dramatic changes in cell physiology. These methods can be used to assess cilia formation and length, the location of the cilium relative to other cellular structures, and localization of specific proteins to the cilium. The subsequent protocols describe how to quantify movement of fluorescent molecules within the cilium using kymographs, photobleaching, and photoconversion. The microtubules that form the structural scaffold of the cilium are also critical avenues for kinesin and dynein-mediated movement of proteins within the cilium. Assessing intraflagellar dynamics can provide insight into mechanisms of ciliary-mediated signal perception and transmission.