Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lippincottschwartz Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3945 Publications

Showing 1341-1350 of 3945 results
04/01/18 | Evaluating the potential of using quantum dots for monitoring electrical signals in neurons.
Efros AL, Delehanty JB, Huston AL, Medintz IL, Barbic M, Harris TD
Nature Nanotechnology. 2018 Apr;13(4):278-288. doi: 10.1038/s41565-018-0107-1

Success in the projects aimed at providing an advanced understanding of the brain is directly predicated on making critical advances in nanotechnology. This Perspective addresses the unique interface of neuroscience and nanomaterials by considering the foundational problem of sensing neuron membrane voltage and offers a potential solution that may be facilitated by a prototypical nanomaterial. Despite substantial improvements, the visualization of instantaneous voltage changes within individual neurons, whether in cell culture or in vivo, at both the single-cell and network level at high speed remains complex and problematic. The unique properties of semiconductor quantum dots (QDs) have made them powerful fluorophores for bioimaging. What is not widely appreciated, however, is that QD photoluminescence is exquisitely sensitive to proximal electric fields. This property should be suitable for sensing voltage changes that occur in the active neuronal membrane. Here, we examine the potential role of QDs in addressing the important challenge of real-time optical voltage imaging.

View Publication Page
Looger Lab
02/16/21 | Evaluation of multi-color genetically encoded Ca indicators in filamentous fungi.
Kim H, Kim J, Hwangbo A, Akerboom J, Looger LL, Duncan R, Son H, Czymmek KJ, Kang S
Fungal Genetics and Biology. 2021 Feb 16:103540. doi: 10.1016/j.fgb.2021.103540

Genetically encoded Ca indicators (GECIs) enable long-term monitoring of cellular and subcellular dynamics of this second messenger in response to environmental and developmental cues without relying on exogenous dyes. Continued development and optimization in GECIs, combined with advances in gene manipulation, offer new opportunities for investigating the mechanism of Ca signaling in fungi, ranging from documenting Ca signatures under diverse conditions and genetic backgrounds to evaluating how changes in Ca signature impact calcium-binding proteins and subsequent cellular changes. Here, we attempted to express multi-color (green, yellow, blue, cyan, and red) circularly permuted fluorescent protein (FP)-based Ca indicators driven by multiple fungal promoters in Fusarium oxysporum, F. graminearum, and Neurospora crassa. Several variants were successfully expressed, with GCaMP5G driven by the Magnaporthe oryzae ribosomal protein 27 (P) and F. verticillioides elongation factor-1α (P) gene promoters being optimal for F. graminearum and F. oxysporum, respectively. Transformants expressing GCaMP5G were compared with those expressing YC3.60, a ratiometric Cameleon Ca indicator. Wild-type and three Ca signaling mutants of F. graminearum expressing GCaMP5G exhibited improved signal-to-noise and increased temporal and spatial resolution and are also more amenable to studies involving multiple FPs compared to strains expressing YC3.60.

View Publication Page
Grigorieff Lab
08/28/15 | Evaluation of super-resolution performance of the K2 electron-counting camera using 2D crystals of aquaporin-0.
Chiu P, Li X, Li Z, Beckett B, Brilot AF, Grigorieff N, Agard DA, Cheng Y, Walz T
Journal of Structural Biology. 2015 Aug 28:. doi: 10.1016/j.jsb.2015.08.015

The K2 Summit camera was initially the only commercially available direct electron detection camera that was optimized for high-speed counting of primary electrons and was also the only one that implemented centroiding so that the resolution of the camera can be extended beyond the Nyquist limit set by the physical pixel size. In this study, we used well-characterized two-dimensional crystals of the membrane protein aquaporin-0 to characterize the performance of the camera below and beyond the physical Nyquist limit and to measure the influence of electron dose rate on image amplitudes and phases.

View Publication Page
03/25/24 | Evaluation of the Cytosolic Uptake of HaloTag Using a pH-Sensitive Dye
Giancola JB, Grimm JB, Jun JV, Petri YD, Lavis LD, Raines RT
ACS Chemical Biology. 2024 Mar 25:. doi: 10.1021/acschembio.3c0071310.1021/acschembio.3c00713.s001

The efficient cytosolic delivery of proteins is critical for advancing novel therapeutic strategies. Current delivery methods are severely limited by endosomal entrapment, and detection methods lack sophistication in tracking the fate of delivered protein cargo. HaloTag, a commonly used protein in chemical biology and a challenging delivery target, is an exceptional model system for understanding and exploiting cellular delivery. Here, we employed a combinatorial strategy to direct HaloTag to the cytosol. We established the use of Virginia Orange, a pH-sensitive fluorophore, and Janelia Fluor 585, a similar but pH-agnostic fluorophore, in a fluorogenic assay to ascertain protein localization within human cells. Using this assay, we investigated HaloTag delivery upon modification with cell-penetrating peptides, carboxyl group esterification, and cotreatment with an endosomolytic agent. We found efficacious cytosolic entry with two distinct delivery methods. This study expands the toolkit for detecting the cytosolic access of proteins and highlights that multiple intracellular delivery strategies can be used synergistically to effect cytosolic access. Moreover, HaloTag is poised to serve as a platform for the delivery of varied cargo into human cells.

View Publication Page
07/11/16 | Evaluation of the Ser-His dipeptide, a putative catalyst of amide and ester hydrolysis.
MacDonald MJ, Lavis LD, Hilvert D, Gellman SH
Organic Letters. 2016 Jul 11:. doi: 10.1021/acs.orglett.6b01279

Efficient hydrolysis of amide bonds has long been a reaction of interest for organic chemists. The rate constants of proteases are unmatched by those of any synthetic catalyst. It has been proposed that a dipeptide containing serine and histidine is an effective catalyst of amide hydrolysis, based on an apparent ability to degrade a protein. The capacity of the Ser-His dipeptide to catalyze the hydrolysis of several discrete ester and amide substrates is investigated using previously described conditions. This dipeptide does not catalyze the hydrolysis of amide or unactivated ester groups in any of the substrates under the conditions evaluated.

View Publication Page
08/22/88 | Evaporative cooling of spin-polarized atomic hydrogen.
Masuhara N, Doyle J, Sandberg J, Kleppner D, Greytak T, Hess HF, Kochanski G
Physical Review Letters. 1988 Aug 22;61(8):935-8

A gas of hydrogen atoms, confined in a static magnetic trap, has been evaporatively cooled to temperatures of a few millikelvin. The initial trap configuration held the gas at 38 mK for as long as 5 h. Evaporative cooling reduced the temperature to 3.0 mK while maintaining the central density at 7.6×10 12   cm −3   . These values were determined by measurement of the rate of electronic spin relaxation and are in agreement with model calculations. Further cooling to 1 mK (inferred from the model) has been achieved. Measurements were made of the efficiency of the evaporative cooling process.

View Publication Page
01/01/08 | Even illumination in total internal reflection fluorescence microscopy using laser light.
Fiolka R, Belyaev Y, Ewers H, Stemmer A
Microscopy Research and Technique. 2008 Jan;71(1):45-50. doi: 10.1002/jemt.20527

In modern fluorescence microscopy, lasers are a widely used source of light, both for imaging in total internal reflection and epi-illumination modes. In wide-field imaging, scattering of highly coherent laser light due to imperfections in the light path typically leads to nonuniform illumination of the specimen, compromising image analysis. We report the design and construction of an objective-launch total internal reflection fluorescence microscopy system with excellent evenness of specimen illumination achieved by azimuthal rotation of the incoming illuminating laser beam. The system allows quick and precise changes of the incidence angle of the laser beam and thus can also be used in an epifluorescence mode.

View Publication Page
Cardona LabTruman LabFetter Lab
10/21/15 | Even-Skipped(+) interneurons are core components of a sensorimotor circuit that maintains left-right symmetric muscle contraction amplitude.
Heckscher ES, Zarin AA, Faumont S, Clark MQ, Manning L, Fushiki A, Schneider-Mizell CM, Fetter RD, Truman JW, Zwart MF, Landgraf M, Cardona A, Lockery SR, Doe CQ
Neuron. 2015 Oct 21;88(2):314-29. doi: 10.1016/j.neuron.2015.09.009

Bilaterally symmetric motor patterns-those in which left-right pairs of muscles contract synchronously and with equal amplitude (such as breathing, smiling, whisking, and locomotion)-are widespread throughout the animal kingdom. Yet, surprisingly little is known about the underlying neural circuits. We performed a thermogenetic screen to identify neurons required for bilaterally symmetric locomotion in Drosophila larvae and identified the evolutionarily conserved Even-skipped(+) interneurons (Eve/Evx). Activation or ablation of Eve(+) interneurons disrupted bilaterally symmetric muscle contraction amplitude, without affecting the timing of motor output. Eve(+) interneurons are not rhythmically active and thus function independently of the locomotor CPG. GCaMP6 calcium imaging of Eve(+) interneurons in freely moving larvae showed left-right asymmetric activation that correlated with larval behavior. TEM reconstruction of Eve(+) interneuron inputs and outputs showed that the Eve(+) interneurons are at the core of a sensorimotor circuit capable of detecting and modifying body wall muscle contraction.

View Publication Page
05/15/16 | Evidence for an audience effect in mice: male social partners alter the male vocal response to female cues.
Seagraves KM, Arthur BJ, Egnor SE
The Journal of Experimental Biology. 2016 May 15;219(Pt 10):1437-48. doi: 10.1242/jeb.129361

Mice (Mus musculus) form large and dynamic social groups and emit ultrasonic vocalizations in a variety of social contexts. Surprisingly, these vocalizations have been studied almost exclusively in the context of cues from only one social partner, despite the observation that in many social species the presence of additional listeners changes the structure of communication signals. Here, we show that male vocal behavior elicited by female odor is affected by the presence of a male audience - with changes in vocalization count, acoustic structure and syllable complexity. We further show that single sensory cues are not sufficient to elicit this audience effect, indicating that multiple cues may be necessary for an audience to be apparent. Together, these experiments reveal that some features of mouse vocal behavior are only expressed in more complex social situations, and introduce a powerful new assay for measuring detection of the presence of social partners in mice.

View Publication Page
06/18/02 | Evidence for large domains of similarly expressed genes in the Drosophila genome.
Spellman PT, Rubin GM
Journal of Biology. 2002 Jun 18;1(1):5. doi: 10.1186/gb-2007-8-7-r145

Transcriptional regulation in eukaryotes generally operates at the level of individual genes. Regulation of sets of adjacent genes by mechanisms operating at the level of chromosomal domains has been demonstrated in a number of cases, but the fraction of genes in the genome subject to regulation at this level is unknown.

View Publication Page