Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lippincottschwartz Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3945 Publications

Showing 1601-1610 of 3945 results
12/08/09 | Glycogen synthase kinase-3/Shaggy mediates ethanol-induced excitotoxic cell death of Drosophila olfactory neurons.
French RL, Heberlein U
Proceedings of the National Academy of Sciences of the United States of America. 2009 Dec 8;106(49):20924-9. doi: 10.1073/pnas.0910813106

It has long been known that heavy alcohol consumption leads to neuropathology and neuronal death. While the response of neurons to an ethanol insult is strongly influenced by genetic background, the underlying mechanisms are poorly understood. Here, we show that even a single intoxicating exposure to ethanol causes non-cell-autonomous apoptotic death specifically of Drosophila olfactory neurons, which is accompanied by a loss of a behavioral response to the smell of ethanol and a blackening of the third antennal segment. The Drosophila homolog of glycogen synthase kinase-3 (GSK-3)beta, Shaggy, is required for ethanol-induced apoptosis. Consistent with this requirement, the GSK-3beta inhibitor lithium protects against the neurotoxic effects of ethanol, indicating the possibility for pharmacological intervention in cases of alcohol-induced neurodegeneration. Ethanol-induced death of olfactory neurons requires both their neural activity and functional NMDA receptors. This system will allow the investigation of the genetic and molecular basis of ethanol-induced apoptosis in general and provide an understanding of the molecular role of GSK-3beta in programmed cell death.

View Publication Page
10/07/05 | GPCR signaling is required for blood-brain barrier formation in drosophila.
Schwabe T, Bainton RJ, Fetter RD, Heberlein U, Gaul U
Cell. 2005 Oct 7;123(1):133-44. doi: 10.1016/j.cell.2005.08.037

The blood-brain barrier of Drosophila is established by surface glia, which ensheath the nerve cord and insulate it against the potassium-rich hemolymph by forming intercellular septate junctions. The mechanisms underlying the formation of this barrier remain obscure. Here, we show that the G protein-coupled receptor (GPCR) Moody, the G protein subunits G alpha i and G alpha o, and the regulator of G protein signaling Loco are required in the surface glia to achieve effective insulation. Our data suggest that the four proteins act in a complex common pathway. At the cellular level, the components function by regulating the cortical actin and thereby stabilizing the extended morphology of the surface glia, which in turn is necessary for the formation of septate junctions of sufficient length to achieve proper sealing of the nerve cord. Our study demonstrates the importance of morphogenetic regulation in blood-brain barrier development and places GPCR signaling at its core.

View Publication Page
Grigorieff Lab
12/01/10 | GPU-enabled FREALIGN: accelerating single particle 3D reconstruction and refinement in Fourier space on graphics processors.
Li X, Grigorieff N, Cheng Y
Journal of Structural Biology. 2010 Dec;172(3):407-12. doi: 10.1016/j.jsb.2010.06.010

Among all the factors that determine the resolution of a 3D reconstruction by single particle electron cryo-microscopy (cryoEM), the number of particle images used in the dataset plays a major role. More images generally yield better resolution, assuming the imaged protein complex is conformationally and compositionally homogeneous. To facilitate processing of very large datasets, we modified the computer program, FREALIGN, to execute the computationally most intensive procedures on Graphics Processing Units (GPUs). Using the modified program, the execution speed increased between 10 and 240-fold depending on the task performed by FREALIGN. Here we report the steps necessary to parallelize critical FREALIGN subroutines and evaluate its performance on computers with multiple GPUs.

View Publication Page
10/20/06 | Gradients of the Drosophila Chinmo BTB-zinc finger protein govern neuronal temporal identity.
Zhu S, Lin S, Kao C, Awasaki T, Chiang A, Lee T
Cell. 2006 Oct 20;127(2):409-22. doi: 10.1016/j.cell.2006.08.045

Many neural progenitors, including Drosophila mushroom body (MB) and projection neuron (PN) neuroblasts, sequentially give rise to different subtypes of neurons throughout development. We identified a novel BTB-zinc finger protein, named Chinmo (Chronologically inappropriate morphogenesis), that governs neuronal temporal identity during postembryonic development of the Drosophila brain. In both MB and PN lineages, loss of Chinmo autonomously causes early-born neurons to adopt the fates of late-born neurons from the same lineages. Interestingly, primarily due to a posttranscriptional control, MB neurons born at early developmental stages contain more abundant Chinmo than their later-born siblings. Further, the temporal identity of MB progeny can be transformed toward earlier or later fates by reducing or increasing Chinmo levels, respectively. Taken together, we suggest that a temporal gradient of Chinmo (Chinmo(high) –> Chinmo(low)) helps specify distinct birth order-dependent cell fates in an extended neuronal lineage.

View Publication Page
04/04/14 | Graph-based active learning of agglomeration (GALA): a Python library to segment 2D and 3D neuroimages
Nunez-Iglesias J, Kennedy R, Plaza SM, Chakraborty A, William T. Katz
Frontiers in Neuroinformatics. 2014 Apr 4;8:34. doi: 10.3389/fninf.2014.00034

The aim in high-resolution connectomics is to reconstruct complete neuronal connectivity in a tissue. Currently, the only technology capable of resolving the smallest neuronal processes is electron microscopy (EM). Thus, a common approach to network reconstruction is to perform (error-prone) automatic segmentation of EM images, followed by manual proofreading by experts to fix errors. We have developed an algorithm and software library to not only improve the accuracy of the initial automatic segmentation, but also point out the image coordinates where it is likely to have made errors. Our software, called gala (graph-based active learning of agglomeration), improves the state of the art in agglomerative image segmentation. It is implemented in Python and makes extensive use of the scientific Python stack (numpy, scipy, networkx, scikit-learn, scikit-image, and others). We present here the software architecture of the gala library, and discuss several designs that we consider would be generally useful for other segmentation packages. We also discuss the current limitations of the gala library and how we intend to address them.

View Publication Page
Schreiter LabLooger Lab
09/18/15 | Green-to-red photoconversion of GCaMP.
Ai M, Mills H, Kanai M, Lai J, Deng J, Schreiter E, Looger L, Neubert T, Suh G
PLoS One. 2015 Sep 18;10(9):e0138127. doi: 10.1371/journal.pone.0138127

Genetically encoded calcium indicators (GECIs) permit imaging intracellular calcium transients. Among GECIs, the GFP-based GCaMPs are the most widely used because of their high sensitivity and rapid response to changes in intracellular calcium concentrations. Here we report that the fluorescence of GCaMPs-including GCaMP3, GCaMP5 and GCaMP6-can be converted from green to red following exposure to blue-green light (450-500 nm). This photoconversion occurs in both insect and mammalian cells and is enhanced in a low oxygen environment. The red fluorescent GCaMPs retained calcium responsiveness, albeit with reduced sensitivity. We identified several amino acid residues in GCaMP important for photoconversion and generated a GCaMP variant with increased photoconversion efficiency in cell culture. This light-induced spectral shift allows the ready labeling of specific, targeted sets of GCaMP-expressing cells for functional imaging in the red channel. Together, these findings indicate the potential for greater utility of existing GCaMP reagents, including transgenic animals.

View Publication Page
02/23/95 | Growth and differentiation in the Drosophila eye coordinated by hedgehog.
Heberlein U, Singh CM, Luk AY, Donohoe TJ
Nature. 1995 Feb 23;373(6516):709-11. doi: 10.1038/373709a0

Differentiation of the Drosophila retina is asynchronous: it starts at the posterior margin of the eye imaginal disc and progresses anteriorly over two days. During this time the disc continues to grow, increasing in size by approximately eightfold. An indentation in the epithelium, the morphogenetic furrow, marks the front edge of the differentiation wave. Anterior progression of the furrow is thought to be driven by signals emanating from differentiating photoreceptor cells in the posterior eye disc. A good candidate for such a signal is the product of the hedgehog (hh) gene; it is expressed, and presumably secreted, by differentiating photoreceptors and its function is required for continued furrow movement. Here we show that ectopic expression of hedgehog sets in motion ectopic furrows in the anterior eye disc. In addition to changes in cell shape, these ectopic furrows are associated with a tightly orchestrated series of events, including proliferation, cell cycle synchronization and pattern formation, that parallel normal furrow progression. We propose that the morphogenetic furrow coincides with a transient boundary that coordinates growth and differentiation of the eye disc, and that hedgehog is necessary and sufficient to propagate this boundary across the epithelium.

View Publication Page
07/13/20 | Growth cone-localized microtubule organizing center establishes microtubule orientation in dendrites.
Liang X, Kokes M, Fetter RD, Sallee MD, Moore AW, Feldman JL, Shen K
eLife. 2020 Jul 13;9:. doi: 10.7554/eLife.56547

A polarized arrangement of neuronal microtubule arrays is the foundation of membrane trafficking and subcellular compartmentalization. Conserved among both invertebrates and vertebrates, axons contain exclusively 'plus-end-out' microtubules while dendrites contain a high percentage of 'minus-end-out' microtubules, the origins of which have been a mystery. Here we show that in the dendritic growth cone contains a non-centrosomal microtubule organizing center, which generates minus-end-out microtubules along outgrowing dendrites and plus-end-out microtubules in the growth cone. RAB-11-positive endosomes accumulate in this region and co-migrate with the microtubule nucleation complex γ-TuRC. The MTOC tracks the extending growth cone by kinesin-1/UNC-116-mediated endosome movements on distal plus-end-out microtubules and dynein clusters this advancing MTOC. Critically, perturbation of the function or localization of the MTOC causes reversed microtubule polarity in dendrites. These findings unveil the endosome-localized dendritic MTOC as a critical organelle for establishing axon-dendrite polarity.

View Publication Page
03/13/07 | GSK-3/Shaggy regulates olfactory habituation in Drosophila.
Wolf FW, Eddison M, Lee S, Cho W, Heberlein U
Proceedings of the National Academy of Sciences of the United States of America. 2007 Mar 13;104(11):4653-7. doi: 10.1073/pnas.0700493104

Habituation is a universal form of nonassociative learning that results in the devaluation of sensory inputs that have little information content. Although habituation is found throughout nature and has been studied in many organisms, the underlying molecular mechanisms remain poorly understood. We performed a forward genetic screen in Drosophila to search for mutations that modified habituation of an olfactory-mediated locomotor startle response, and we isolated a mutation in the glycogen synthase kinase-3 (GSK-3) homolog Shaggy. Decreases in Shaggy levels blunted habituation, whereas increases promoted habituation. Additionally, habituation acutely regulated Shaggy by an inhibitory phosphorylation mechanism, suggesting that a signal transduction pathway that regulates Shaggy is engaged during habituation. Although shaggy mutations also affected circadian rhythm period, this requirement was genetically separable from its role in habituation. Thus, shaggy functions in different neuronal circuits to regulate behavioral plasticity to an olfactory startle and circadian rhythmicity.

View Publication Page
02/01/07 | Guidelines on nicotine dose selection for in vivo research.
Matta SG, Balfour DJ, Benowitz NL, Boyd RT, Buccafusco JJ, Caggiula AR, Craig CR, Collins AC, Damaj MI, Donny EC, Gardiner PS, Grady SR, Heberlein U, Leonard SS, Levin ED, Lukas RJ, Markou A, Marks MJ, McCallum SE, Parameswaran N, Perkins KA, Picciotto MR, Quik M, Rose JE, Rothenfluh A, Schafer WR, Stolerman IP, Tyndale RF, Wehner JM, Zirger JM
Psychopharmacology (Berl). 2007 Feb;190(3):269-319. doi: 10.1007/s00213-006-0441-0

RATIONALE: This review provides insight for the judicious selection of nicotine dose ranges and routes of administration for in vivo studies. The literature is replete with reports in which a dosaging regimen chosen for a specific nicotine-mediated response was suboptimal for the species used. In many cases, such discrepancies could be attributed to the complex variables comprising species-specific in vivo responses to acute or chronic nicotine exposure.

OBJECTIVES: This review capitalizes on the authors' collective decades of in vivo nicotine experimentation to clarify the issues and to identify the variables to be considered in choosing a dosaging regimen. Nicotine dose ranges tolerated by humans and their animal models provide guidelines for experiments intended to extrapolate to human tobacco exposure through cigarette smoking or nicotine replacement therapies. Just as important are the nicotine dosaging regimens used to provide a mechanistic framework for acquisition of drug-taking behavior, dependence, tolerance, or withdrawal in animal models.

RESULTS: Seven species are addressed: humans, nonhuman primates, rats, mice, Drosophila, Caenorhabditis elegans, and zebrafish. After an overview on nicotine metabolism, each section focuses on an individual species, addressing issues related to genetic background, age, acute vs chronic exposure, route of administration, and behavioral responses.

CONCLUSIONS: The selected examples of successful dosaging ranges are provided, while emphasizing the necessity of empirically determined dose-response relationships based on the precise parameters and conditions inherent to a specific hypothesis. This review provides a new, experimentally based compilation of species-specific dose selection for studies on the in vivo effects of nicotine.

View Publication Page