Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lippincottschwartz Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3945 Publications

Showing 191-200 of 3945 results
12/01/19 | A neuronal pathway that commands deceleration in Drosophila larval light-avoidance.
Gong C, Ouyang Z, Zhao W, Wang J, Li K, Zhou P, Zhao T, Zheng N, Gong Z
Neuroscience Bulletin. 2019 Dec 1;35(6):. doi: 10.1007/s12264-019-00349-w

When facing a sudden danger or aversive condition while engaged in on-going forward motion, animals transiently slow down and make a turn to escape. The neural mechanisms underlying stimulation-induced deceleration in avoidance behavior are largely unknown. Here, we report that in Drosophila larvae, light-induced deceleration was commanded by a continuous neural pathway that included prothoracicotropic hormone neurons, eclosion hormone neurons, and tyrosine decarboxylase 2 motor neurons (the PET pathway). Inhibiting neurons in the PET pathway led to defects in light-avoidance due to insufficient deceleration and head casting. On the other hand, activation of PET pathway neurons specifically caused immediate deceleration in larval locomotion. Our findings reveal a neural substrate for the emergent deceleration response and provide a new understanding of the relationship between behavioral modules in animal avoidance responses.

View Publication Page
01/10/21 | A neuropeptidergic circuit gates selective escape behavior of Drosophila larvae.
Imambocus BN, Zhou F, Formozov A, Wittich A, Tenedini FM, Hu C, Sauter K, Macarenhas Varela E, Herédia F, Casimiro AP, Macedo A, Schlegel P, Yang C, Miguel-Aliaga I, Wiegert JS, Pankratz MJ, Gontijo AM, Cardona A, Soba P
Current Biology. 2022 Jan 10;32(1):149-63. doi: 10.1016/j.cub.2021.10.069

Animals display selective escape behaviors when faced with environmental threats. Selection of the appropriate response by the underlying neuronal network is key to maximizing chances of survival, yet the underlying network mechanisms are so far not fully understood. Using synapse-level reconstruction of the Drosophila larval network paired with physiological and behavioral readouts, we uncovered a circuit that gates selective escape behavior for noxious light through acute and input-specific neuropeptide action. Sensory neurons required for avoidance of noxious light and escape in response to harsh touch, each converge on discrete domains of neuromodulatory hub neurons. We show that acute release of hub neuron-derived insulin-like peptide 7 (Ilp7) and cognate relaxin family receptor (Lgr4) signaling in downstream neurons are required for noxious light avoidance, but not harsh touch responses. Our work highlights a role for compartmentalized circuit organization and neuropeptide release from regulatory hubs, acting as central circuit elements gating escape responses.

View Publication Page
03/01/17 | A new brain dopamine deficient Drosophila and its pharmacological and genetic rescue.
Cichewicz K, Garren EJ, Adiele C, Aso Y, Wang Z, Wu M, Birman S, Rubin GM, Hirsh J
Genes, Brain, and Behavior. 2017 Mar.01 ;16(3):394-403. doi: 10.1111/gbb.12353

Dopamine (DA) is a neurotransmitter with conserved behavioral roles between invertebrate and vertebrate animals. In addition to its neural functions, in insects DA is a critical substrate for cuticle pigmentation and hardening. Drosophila tyrosine hydroxylase (DTH) is the rate limiting enzyme for DA biosynthesis. Viable brain DA deficient flies were previously generated using tissue selective GAL4-UAS binary expression rescue of a DTH null mutation and these flies show specific behavioral impairments. To circumvent the limitations of rescue via binary expression, here we achieve rescue utilizing genomically integrated mutant DTH. As expected, our DA deficient flies have no detectable DTH or DA in the brain, and show reduced locomotor activity. This deficit can be rescued by L-DOPA/carbidopa feeding, similar to human Parkinson's disease treatment. Genetic rescue via GAL4/UAS-DTH was also successful, although this required the generation of a new UAS-DTH1 transgene devoid of most untranslated regions, since existing UAS-DTH transgenes express in the brain without a Gal4 driver via endogenous regulatory elements. A surprising finding of our newly constructed UAS-DTH1m is that it expresses DTH at an undetectable level when regulated by dopaminergic GAL4 drivers even when fully rescuing DA, indicating that DTH immunostaining is not necessarily a valid marker for DA expression. This finding necessitated optimizing DA immunohistochemistry, revealing details of DA innervation to the mushroom body and the central complex. When DA rescue is limited to specific DA neurons, DA does not diffuse beyond the DTH-expressing terminals, such that DA signaling can be limited to very specific brain regions.

View Publication Page
Tjian Lab
11/19/10 | A new focus on plant sciences.
McCormick SJ, Tjian R
Science. 2010 Nov 19;330(6007):1021. doi: 10.1073/pnas.1100640108
Eddy/Rivas Lab
10/01/09 | A new generation of homology search tools based on probabilistic inference.
Eddy SR
Genome Informatics. International Conference on Genome Informatics. 2009 Oct;23(1):205-11

Many theoretical advances have been made in applying probabilistic inference methods to improve the power of sequence homology searches, yet the BLAST suite of programs is still the workhorse for most of the field. The main reason for this is practical: BLAST’s programs are about 100-fold faster than the fastest competing implementations of probabilistic inference methods. I describe recent work on the HMMER software suite for protein sequence analysis, which implements probabilistic inference using profile hidden Markov models. Our aim in HMMER3 is to achieve BLAST’s speed while further improving the power of probabilistic inference based methods. HMMER3 implements a new probabilistic model of local sequence alignment and a new heuristic acceleration algorithm. Combined with efficient vector-parallel implementations on modern processors, these improvements synergize. HMMER3 uses more powerful log-odds likelihood scores (scores summed over alignment uncertainty, rather than scoring a single optimal alignment); it calculates accurate expectation values (E-values) for those scores without simulation using a generalization of Karlin/Altschul theory; it computes posterior distributions over the ensemble of possible alignments and returns posterior probabilities (confidences) in each aligned residue; and it does all this at an overall speed comparable to BLAST. The HMMER project aims to usher in a new generation of more powerful homology search tools based on probabilistic inference methods.

View Publication Page
11/09/02 | A new NOS2 promoter polymorphism associated with increased nitric oxide production and protection from severe malaria in Tanzanian and Kenyan children.
Hobbs MR, Udhayakumar V, Levesque MC, Booth J, Roberts JM, Tkachuk AN, Pole A, Coon H, Kariuki S, Nahlen BL, Mwaikambo ED, Lal AL, Granger DL, Anstey NM, Weinberg JB
Lancet. 2002 Nov 9;360(9344):1468-75. doi: 10.1016/S0140-6736(02)11474-7

Nitric oxide (NO) is a mediator of immunity to malaria, and genetic polymorphisms in the promoter of the inducible NO synthase gene (NOS2) could modulate production of NO. We postulated that NOS2 promoter polymorphisms would affect resistance to severe malaria.

View Publication Page
12/01/06 | A new role for microRNA pathways: modulation of degeneration induced by pathogenic human disease proteins.
Bilen J, Liu N, Bonini NM
Cell Cycle . 2006 Dec;5(24):2835-8

MicroRNAs (miRNAs) are small noncoding RNAs that regulate the expression of target transcript mRNAs. Many miRNAs have been defined, however their roles and the processes influenced by miRNA pathways are still being elucidated. A role for miRNAs in development and cancer has been described. We recently isolated the miRNA bantam (ban) in a genetic screen for modulators of pathogenicity of a human neurodegenerative disease model in Drosophila. These studies showed that upregulation of ban mitigates degeneration induced by the pathogenic polyglutamine (polyQ) protein Ataxin-3, which is mutated in the human polyglutamine disease spinocerebellar ataxia type 3 (SCA3). To address the broader role for miRNAs in neuroprotection, we also showed that loss of all miRNAs, by dicer mutation, dramatically enhances pathogenic polyQ protein toxicity in flies and in human HeLa cells. These studies suggest that miRNAs may be important for neuronal survival in the context of human neurodegenerative disease. These studies provide the foundation to define the miRNAs involved in neurodegenerative disease, and the biological pathways affected.

View Publication Page
10/12/07 | A new strategy for the synthesis of benzylic sulfonamides: palladium-catalyzed arylation and sulfonamide metathesis.
Grimm JB, Katcher MH, Witter DJ, Northrup AB
The Journal of Organic Chemistry. 2007 Oct 12;72(21):8135-8. doi: 10.1021/jo701431j

An efficient two-step strategy has been developed to access diversely functionalized benzylic sulfonamides. Execution of this strategy required the development of two reaction methods: the palladium-catalyzed cross-coupling of aryl halides with CH-acidic methanesulfonamides and a metathesis reaction between the resulting alpha-arylated sulfonamides and diverse amines. The broad scope of the cross-coupling process combined with a versatile sulfonamide metathesis constitutes an efficient strategy for the synthesis of various benzylic sulfonamides.

View Publication Page
06/10/08 | A novel basal ganglia pathway forms a loop linking a vocal learning circuit with its dopaminergic input.
Gale SD, Person AL, Perkel DJ
The Journal of Comparative Neurology. 2008 Jun 10;508(5):824-39. doi: 10.1002/cne.21700

Dopamine has been implicated in mediating contextual modulation of motor behaviors and learning in many species. In songbirds, dopamine may act on the basal ganglia nucleus Area X to influence the neural activity that contributes to vocal learning and contextual changes in song variability. Neurons in midbrain dopamine centers, the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA), densely innervate Area X and show singing-related changes in firing rate. In addition, dopamine levels in Area X change during singing. It is unknown, however, how song-related information could reach dopaminergic neurons. Here we report an anatomical pathway that could provide song-related information to the SNc and VTA. By using injections of bidirectionally transported fluorescent tracers in adult male zebra finches, we show that Area X and other song control nuclei do not project directly to the SNc or VTA. Instead, we describe an indirect pathway from Area X to midbrain dopaminergic neurons via a connection in the ventral pallidum (VP). Specifically, Area X projects to the VP via axon collaterals of Area X output neurons that also project to the thalamus. Dual injections revealed that the area of VP receiving input from Area X projects to the SNc and VTA. Furthermore, VP terminals in the SNc and VTA overlap with cells that project back to Area X. A portion of the arcopallium also projects to the SNc and VTA and could carry auditory information. These data demonstrate an anatomical loop through which Area X activity could influence its dopaminergic input.

View Publication Page
Zuker Lab
03/17/00 | A novel family of mammalian taste receptors.
Adler E, Hoon MA, Mueller KL, Chandrashekar J, Ryba NJ, Zuker CS
Cell. 2000 Mar 17;100:693-702

In mammals, taste perception is a major mode of sensory input. We have identified a novel family of 40-80 human and rodent G protein-coupled receptors expressed in subsets of taste receptor cells of the tongue and palate epithelia. These candidate taste receptors (T2Rs) are organized in the genome in clusters and are genetically linked to loci that influence bitter perception in mice and humans. Notably, a single taste receptor cell expresses a large repertoire of T2Rs, suggesting that each cell may be capable of recognizing multiple tastants. T2Rs are exclusively expressed in taste receptor cells that contain the G protein alpha subunit gustducin, implying that they function as gustducin-linked receptors. In the accompanying paper, we demonstrate that T2Rs couple to gustducin in vitro, and respond to bitter tastants in a functional expression assay.

View Publication Page