Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lippincottschwartz Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3945 Publications

Showing 1911-1920 of 3945 results
03/01/11 | Intracellular dynamics of virtual place cells.
Romani S, Sejnowski TJ, Tsodyks M
Neural Computation. 2011 Mar;23(3):651-5. doi: 10.1162/NECO_a_00087

The pattern of spikes recorded from place cells in the rodent hippocampus is strongly modulated by both the spatial location in the environment and the theta rhythm. The phases of the spikes in the theta cycle advance during movement through the place field. Recently intracellular recordings from hippocampal neurons (Harvey, Collman, Dombeck, & Tank, 2009 ) showed an increase in the amplitude of membrane potential oscillations inside the place field, which was interpreted as evidence that an intracellular mechanism caused phase precession. Here we show that an existing network model of the hippocampus (Tsodyks, Skaggs, Sejnowski, & McNaughton, 1996 ) can equally reproduce this and other aspects of the intracellular recordings, which suggests that new experiments are needed to distinguish the contributions of intracellular and network mechanisms to phase precession.

View Publication Page
07/01/21 | Intracellular mRNA transport and localized translation.
Das S, Vera M, Gandin V, Singer RH, Tutucci E
Nature Reviews Molecular Cell Biology. 2021 Jul 1;22(7):483-504. doi: 10.1038/s41580-021-00356-8

Fine-tuning cellular physiology in response to intracellular and environmental cues requires precise temporal and spatial control of gene expression. High-resolution imaging technologies to detect mRNAs and their translation state have revealed that all living organisms localize mRNAs in subcellular compartments and create translation hotspots, enabling cells to tune gene expression locally. Therefore, mRNA localization is a conserved and integral part of gene expression regulation from prokaryotic to eukaryotic cells. In this Review, we discuss the mechanisms of mRNA transport and local mRNA translation across the kingdoms of life and at organellar, subcellular and multicellular resolution. We also discuss the properties of messenger ribonucleoprotein and higher order RNA granules and how they may influence mRNA transport and local protein synthesis. Finally, we summarize the technological developments that allow us to study mRNA localization and local translation through the simultaneous detection of mRNAs and proteins in single cells, mRNA and nascent protein single-molecule imaging, and bulk RNA and protein detection methods.

View Publication Page
02/01/12 | Intracellular recording in behaving animals.
Long MA, Lee AK
Current Opinion in Neurobiology. 2012 Feb;22(1):34-44. doi: 10.1016/j.conb.2011.10.013

Electrophysiological recordings from behaving animals provide an unparalleled view into the functional role of individual neurons. Intracellular approaches can be especially revealing as they provide information about a neuron's inputs and intrinsic cellular properties, which together determine its spiking output. Recent technical developments have made intracellular recording possible during an ever-increasing range of behaviors in both head-fixed and freely moving animals. These recordings have yielded fundamental insights into the cellular and circuit mechanisms underlying neural activity during natural behaviors in such areas as sensory perception, motor sequence generation, and spatial navigation, forging a direct link between cellular and systems neuroscience.

View Publication Page
05/12/20 | Intracellular signaling dynamics and their role in coordinating tissue repair.
Ghilardi SJ, O'Reilly BM, Sgro AE
Wiley Interdiscip Rev Syst Biol Med. 05/2020;12(3):e1479. doi: 10.1002/wsbm.1479

Tissue repair is a complex process that requires effective communication and coordination between cells across multiple tissues and organ systems. Two of the initial intracellular signals that encode injury signals and initiate tissue repair responses are calcium and extracellular signal-regulated kinase (ERK). However, calcium and ERK signaling control a variety of cellular behaviors important for injury repair including cellular motility, contractility, and proliferation, as well as the activity of several different transcription factors, making it challenging to relate specific injury signals to their respective repair programs. This knowledge gap ultimately hinders the development of new wound healing therapies that could take advantage of native cellular signaling programs to more effectively repair tissue damage. The objective of this review is to highlight the roles of calcium and ERK signaling dynamics as mechanisms that link specific injury signals to specific cellular repair programs during epithelial and stromal injury repair. We detail how the signaling networks controlling calcium and ERK can now also be dissected using classical signal processing techniques with the advent of new biosensors and optogenetic signal controllers. Finally, we advocate the importance of recognizing calcium and ERK dynamics as key links between injury detection and injury repair programs that both organize and execute a coordinated tissue repair response between cells across different tissues and organs. This article is categorized under: Models of Systems Properties and Processes > Mechanistic Models Biological Mechanisms > Cell Signaling Laboratory Methods and Technologies > Imaging Models of Systems Properties and Processes > Organ, Tissue, and Physiological Models.

View Publication Page
04/19/12 | Intracellular spatial localization regulated by the microtubule network.
Chen J, Lippincott-Schwartz J, Liu J
PloS one. 2012;7(4):e34919. doi: 10.1371/journal.pone.0034919

The commonly recognized mechanisms for spatial regulation inside the cell are membrane-bounded compartmentalization and biochemical association with subcellular organelles. We use computational modeling to investigate another spatial regulation mechanism mediated by the microtubule network in the cell. Our results demonstrate that the mitotic spindle can impose strong sequestration and concentration effects on molecules with binding affinity for microtubules, especially dynein-directed cargoes. The model can recapitulate the essence of three experimental observations on distinct microtubule network morphologies: the sequestration of germ plasm components by the mitotic spindles in the Drosophila syncytial embryo, the asymmetric cell division initiated by the time delay in centrosome maturation in the Drosophila neuroblast, and the diffusional block between neighboring energids in the Drosophila syncytial embryo. Our model thus suggests that the cell cycle-dependent changes in the microtubule network are critical for achieving different spatial regulation effects. The microtubule network provides a spatially extensive docking platform for molecules and gives rise to a "structured cytoplasm", in contrast to a free and fluid environment.

View Publication Page
Murphy Lab
03/01/05 | Intraglomerular inhibition: signaling mechanisms of an olfactory microcircuit.
Murphy GJ, Darcy DP, Isaacson JS
Nature Neuroscience. 2005 Mar;8(3):354-64. doi: 10.1038/nn1403

Microcircuits composed of principal neuron and interneuron dendrites have an important role in shaping the representation of sensory information in the olfactory bulb. Here we establish the physiological features governing synaptic signaling in dendrodendritic microcircuits of olfactory bulb glomeruli. We show that dendritic gamma-aminobutyric acid (GABA) release from periglomerular neurons mediates inhibition of principal tufted cells, retrograde inhibition of sensory input and lateral signaling onto neighboring periglomerular cells. We find that L-type dendritic Ca(2+) spikes in periglomerular cells underlie dendrodendritic transmission by depolarizing periglomerular dendrites and activating P/Q type channels that trigger GABA release. Ca(2+) spikes in periglomerular cells are evoked by powerful excitatory inputs from a single principal cell, and glutamate release from the dendrites of single principal neurons activates a large ensemble of periglomerular cells.

View Publication Page
02/08/17 | Intramolecular Photogeneration of a Tyrosine Radical in a Designed Protein
Tebo AG, Quaranta A, Herrero C, Pecoraro VL, Aukauloo A
ChemPhotoChem. 02/2017;1:89 – 92. doi: 10.1002/cptc.201600044

Long‐distance biological electron transfer occurs through a hopping mechanism and often involves tyrosine as a high potential intermediate, for example in the early charge separation steps during photosynthesis. Protein design allows for the development of minimal systems to study the underlying principles of complex systems. Herein, we report the development of the first ruthenium‐linked designed protein for the photogeneration of a tyrosine radical by intramolecular electron transfer.

View Publication Page
11/13/07 | Intraspecies regulation of ribonucleolytic activity.
Johnson RJ, Lavis LD, Raines RT
Biochemistry. 2007 Nov 13;46:13131-40. doi: 10.1021/bi701521q

The evolutionary rate of proteins involved in obligate protein-protein interactions is slower and the degree of coevolution higher than that for nonobligate protein-protein interactions. The coevolution of the proteins involved in certain nonobligate interactions is, however, essential to cell survival. To gain insight into the coevolution of one such nonobligate protein pair, the cytosolic ribonuclease inhibitor (RI) proteins and secretory pancreatic-type ribonucleases from cow (Bos taurus) and human (Homo sapiens) were produced in Escherichia coli and purified, and their physicochemical properties were analyzed. The two intraspecies complexes were found to be extremely tight (bovine Kd = 0.69 fM; human Kd = 0.34 fM). Human RI binds to its cognate ribonuclease (RNase 1) with 100-fold greater affinity than to the bovine homologue (RNase A). In contrast, bovine RI binds to RNase 1 and RNase A with nearly equal affinity. This broader specificity is consistent with there being more pancreatic-type ribonucleases in cows (20) than humans (13). Human RI (32 cysteine residues) also has 4-fold less resistance to oxidation by hydrogen peroxide than does bovine RI (29 cysteine residues). This decreased oxidative stability of human RI, which is caused largely by Cys74, implies a larger role for human RI as an antioxidant. The conformational and oxidative stabilities of both RIs increase upon complex formation with ribonucleases. Thus, RI has evolved to maintain its inhibition of invading ribonucleases, even when confronted with extreme environmental stress. That role appears to take precedence over its role in mediating oxidative damage.

View Publication Page
09/15/14 | Intrinsic bursting of aII amacrine cells underlies oscillations in the rd1 mouse retina.
Choi H, Zhang L, Cembrowski MS, Sabottke CF, Markowitz AL, Butts DA, Kath WL, Singer JH, Riecke H
Journal of Neurophysiology. 2014 Sep 15;112(6):1491-504. doi: 10.1152/jn.00437.2014

In many forms of retinal degeneration, photoreceptors die but inner retinal circuits remain intact. In the rd1 mouse, an established model for blinding retinal diseases, spontaneous activity in the coupled network of AII amacrine and ON cone bipolar cells leads to rhythmic bursting of ganglion cells. Since such activity could impair retinal and/or cortical responses to restored photoreceptor function, understanding its nature is important for developing treatments of retinal pathologies. Here we analyzed a compartmental model of the wild-type mouse AII amacrine cell to predict that the cell's intrinsic membrane properties, specifically, interacting fast Na and slow, M-type K conductances, would allow its membrane potential to oscillate when light-evoked excitatory synaptic inputs were withdrawn following photoreceptor degeneration. We tested and confirmed this hypothesis experimentally by recording from AIIs in a slice preparation of rd1 retina. Additionally, recordings from ganglion cells in a whole mount preparation of rd1 retina demonstrated that activity in AIIs was propagated unchanged to elicit bursts of action potentials in ganglion cells. We conclude that oscillations are not an emergent property of a degenerated retinal network. Rather, they arise largely from the intrinsic properties of a single retinal interneuron, the AII amacrine cell.

View Publication Page
Gonen Lab
11/05/13 | Intrinsic disorder within an AKAP-protein kinase A complex guides local substrate phosphorylation.
Smith FD, Reichow SL, Esseltine JL, Shi D, Langeberg LK, Scott JD, Gonen T
eLife. 2013 Nov 5;2:e01319. doi: 10.7554/eLife.01319

Anchoring proteins sequester kinases with their substrates to locally disseminate intracellular signals and avert indiscriminate transmission of these responses throughout the cell. Mechanistic understanding of this process is hampered by limited structural information on these macromolecular complexes. A-kinase anchoring proteins (AKAPs) spatially constrain phosphorylation by cAMP-dependent protein kinases (PKA). Electron microscopy and three-dimensional reconstructions of type-II PKA-AKAP18γ complexes reveal hetero-pentameric assemblies that adopt a range of flexible tripartite configurations. Intrinsically disordered regions within each PKA regulatory subunit impart the molecular plasticity that affords an \~{}16 nanometer radius of motion to the associated catalytic subunits. Manipulating flexibility within the PKA holoenzyme augmented basal and cAMP responsive phosphorylation of AKAP-associated substrates. Cell-based analyses suggest that the catalytic subunit remains within type-II PKA-AKAP18γ complexes upon cAMP elevation. We propose that the dynamic movement of kinase sub-structures, in concert with the static AKAP-regulatory subunit interface, generates a solid-state signaling microenvironment for substrate phosphorylation. DOI: http://dx.doi.org/10.7554/eLife.01319.001.

View Publication Page