Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lippincottschwartz Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3945 Publications

Showing 1991-2000 of 3945 results
01/01/06 | Large-scale biophysical parameter estimation in single neurons via constrained linear regression.
Ahrens M, Huys Q, Paninski L
Neural Information Processing Systems. 2006;18:

Our understanding of the input-output function of single cells has been substantially advanced by biophysically accurate multi-compartmental models. The large number of parameters needing hand tuning in these models has, however, somewhat hampered their applicability and interpretability. Here we propose a simple and well-founded method for automatic estimation of many of these key parameters: 1) the spatial distribution of channel densities on the cell’s membrane; 2) the spatiotemporal pattern of synaptic input; 3) the channels’ reversal potentials; 4) the intercompartmental conductances; and 5) the noise level in each compartment. We assume experimental access to: a) the spatiotemporal voltage signal in the dendrite (or some contiguous subpart thereof, e.g. via voltage sensitive imaging techniques), b) an approximate kinetic description of the channels and synapses present in each compartment, and c) the morphology of the part of the neuron under investigation. The key observation is that, given data a)-c), all of the parameters 1)-4) may be simultaneously inferred by a version of constrained linear regression; this regression, in turn, is efficiently solved using standard algorithms, without any “local minima” problems despite the large number of parameters and complex dynamics. The noise level 5) may also be estimated by standard techniques. We demonstrate the method’s accuracy on several model datasets, and describe techniques for quantifying the uncertainty in our estimates.

View Publication Page
02/04/23 | Large-scale brain-wide neural recording in nonhuman primates
Eric M. Trautmann , Janis K. Hesse , Gabriel M. Stine , Ruobing Xia , Shude Zhu , Daniel J. O’Shea , Bill Karsh , Jennifer Colonell , Frank F. Lanfranchi , Saurabh Vyas , Andrew Zimnik , Natalie A. Steinmann , Daniel A. Wagenaar , Alexandru Andrei , Carolina Mora Lopez , John O’Callaghan , Jan Putzeys , Bogdan C. Raducanu , Marleen Welkenhuysen , Mark Churchland , Tirin Moore , Michael Shadlen , Krishna Shenoy , Doris Tsao , Barundeb Dutta , Timothy Harris
bioRxiv. 2023 Feb 04:. doi: 10.1101/2023.02.01.526664

High-density, integrated silicon electrodes have begun to transform systems neuroscience, by enabling large-scale neural population recordings with single cell resolution. Existing technologies, however, have provided limited functionality in nonhuman primate species such as macaques, which offer close models of human cognition and behavior. Here, we report the design, fabrication, and performance of Neuropixels 1.0-NHP, a high channel count linear electrode array designed to enable large-scale simultaneous recording in superficial and deep structures within the macaque or other large animal brain. These devices were fabricated in two versions: 4416 electrodes along a 45 mm shank, and 2496 along a 25 mm shank. For both versions, users can programmably select 384 channels, enabling simultaneous multi-area recording with a single probe. We demonstrate recording from over 3000 single neurons within a session, and simultaneous recordings from over 1000 neurons using multiple probes. This technology represents a significant increase in recording access and scalability relative to existing technologies, and enables new classes of experiments involving fine-grained electrophysiological characterization of brain areas, functional connectivity between cells, and simultaneous brain-wide recording at scale.

View Publication Page
04/01/16 | Large-scale electron microscopy image segmentation in spark.
Plaza SM, Berg SE
arXiv. 1 April 2016:arXiv:1604.00385

The emerging field of connectomics aims to unlock the mysteries of the brain by understanding the connectivity between neurons. To map this connectivity, we acquire thousands of electron microscopy (EM) images with nanometer-scale resolution. After aligning these images, the resulting dataset has the potential to reveal the shapes of neurons and the synaptic connections between them. However, imaging the brain of even a tiny organism like the fruit fly yields terabytes of data. It can take years of manual effort to examine such image volumes and trace their neuronal connections. One solution is to apply image segmentation algorithms to help automate the tracing tasks. In this paper, we propose a novel strategy to apply such segmentation on very large datasets that exceed the capacity of a single machine. Our solution is robust to potential segmentation errors which could otherwise severely compromise the quality of the overall segmentation, for example those due to poor classifier generalizability or anomalies in the image dataset. We implement our algorithms in a Spark application which minimizes disk I/O, and apply them to a few large EM datasets, revealing both their effectiveness and scalability. We hope this work will encourage external contributions to EM segmentation by providing 1) a flexible plugin architecture that deploys easily on different cluster environments and 2) an in-memory representation of segmentation that could be conducive to new advances.

View Publication Page
03/10/06 | Large-scale gene discovery in the pea aphid Acyrthosiphon pisum (Hemiptera).
Sabater-Muñoz B, Legeai F, Rispe C, Bonhomme J, Dearden P, Dossat C, Duclert A, Gauthier J, Ducray DG, Hunter W, Dang P, Kambhampati S, Martinez-Torres D, Cortes T, Moya A, Nakabachi A, Philippe C, Prunier-Leterme N, Rahbé Y, Simon J, Stern DL, Wincker P, Tagu D
Genome Biol. 2006;7(3):R21. doi: 10.1186/gb-2006-7-3-r21

Aphids are the leading pests in agricultural crops. A large-scale sequencing of 40,904 ESTs from the pea aphid Acyrthosiphon pisum was carried out to define a catalog of 12,082 unique transcripts. A strong AT bias was found, indicating a compositional shift between Drosophila melanogaster and A. pisum. An in silico profiling analysis characterized 135 transcripts specific to pea-aphid tissues (relating to bacteriocytes and parthenogenetic embryos). This project is the first to address the genetics of the Hemiptera and of a hemimetabolous insect.

View Publication Page
06/01/15 | Large-scale imaging in small brains.
Ahrens MB, Engert F
Current Opinion in Neurobiology. 2015 Jun 1;32C:78-86. doi: 10.1016/j.conb.2015.01.007

The dense connectivity in the brain means that one neuron's activity can influence many others. To observe this interconnected system comprehensively, an aspiration within neuroscience is to record from as many neurons as possible at the same time. There are two useful routes toward this goal: one is to expand the spatial extent of functional imaging techniques, and the second is to use animals with small brains. Here we review recent progress toward imaging many neurons and complete populations of identified neurons in small vertebrates and invertebrates.

View Publication Page
03/01/14 | Large-scale, high-density (up to 512 channels) recording of local circuits in behaving animals.
Berenyi A, Somogyvári Z, Nagy AJ, Roux L, Long JD, Fujisawa S, Stark E, Leonardo A, Harris TD, Buzsáki G
Journal of Neurophysiology. 2014 Mar;111(5):1132-49. doi: 10.1152/jn.00785.2013

Monitoring representative fractions of neurons from multiple brain circuits in behaving animals is necessary for understanding neuronal computation. Here, we describe a system that allows high-channel-count recordings from a small volume of neuronal tissue using a lightweight signal multiplexing headstage that permits free behavior of small rodents. The system integrates multishank, high-density recording silicon probes, ultraflexible interconnects, and a miniaturized microdrive. These improvements allowed for simultaneous recordings of local field potentials and unit activity from hundreds of sites without confining free movements of the animal. The advantages of large-scale recordings are illustrated by determining the electroanatomic boundaries of layers and regions in the hippocampus and neocortex and constructing a circuit diagram of functional connections among neurons in real anatomic space. These methods will allow the investigation of circuit operations and behavior-dependent interregional interactions for testing hypotheses of neural networks and brain function.

View Publication Page
Riddiford Lab
02/01/09 | Larval leg integrity is maintained by distal-less and is required for proper timing of metamorphosis in the flour beetle, tribolium castaneum.
Suzuki Y, Squires DC, Riddiford LM
Developmental Biology. 2009 Feb 1;326(1):60-7. doi: 10.1016/j.ydbio.2008.10.022

The dramatic transformation from a larva to an adult must be accompanied by a coordinated activity of genes and hormones that enable an orchestrated transformation from larval to pupal/adult tissues. The maintenance of larval appendages and their subsequent transformation to appendages in holometabolous insects remains elusive at the developmental genetic level. Here the role of a key appendage patterning gene Distal-less (Dll) was examined in mid- to late-larval stages of the flour beetle, Tribolium castaneum. During late larval development, Dll was expressed in appendages in a similar manner as previously reported for the tobacco hornworm, Manduca sexta. Removal of this late Dll expression resulted in disruption of adult appendage patterning. Intriguingly, earlier removal resulted in dramatic loss of structural integrity and identity of larval appendages. A large amount of variability in appendage morphology was observed following Dll dsRNA injection, unlike larvae injected with dachshund dsRNA. These Dll dsRNA-injected larvae underwent numerous supernumerary molts, which could be terminated with injection of either JH methyltransferase or Methoprene-tolerant dsRNA. Apparently, the partial dedifferentiation of the appendages in these larvae acts to maintain high JH and, hence, prevents metamorphosis.

View Publication Page
01/01/18 | larvalign: Aligning gene expression patterns from the larval brain of Drosophila melanogaster.
Muenzing SE, Strauch M, Truman JW, Bühler K, Thum AS, Merhof D
Neuroinformatics. 2018 Jan 1;16(1):65-80. doi: 10.1007/s12021-017-9349-6

The larval brain of the fruit fly Drosophila melanogaster is a small, tractable model system for neuroscience. Genes for fluorescent marker proteins can be expressed in defined, spatially restricted neuron populations. Here, we introduce the methods for 1) generating a standard template of the larval central nervous system (CNS), 2) spatial mapping of expression patterns from different larvae into a reference space defined by the standard template. We provide a manually annotated gold standard that serves for evaluation of the registration framework involved in template generation and mapping. A method for registration quality assessment enables the automatic detection of registration errors, and a semi-automatic registration method allows one to correct registrations, which is a prerequisite for a high-quality, curated database of expression patterns. All computational methods are available within the larvalign software package: https://github.com/larvalign/larvalign/releases/tag/v1.0.

View Publication Page
07/05/24 | LarvaTagger: Manual and automatic tagging of drosophila larval behaviour.
Laurent F, Blanc A, May L, Gándara L, Cocanougher BT, Jones BM, Hague P, Barre C, Vestergaard CL, Crocker J, Zlatic M, Jovanic T, Masson J
Bioinformatics. 2024 Jul 05:. doi: 10.1093/bioinformatics/btae441

MOTIVATION: As more behavioural assays are carried out in large-scale experiments on Drosophila larvae, the definitions of the archetypal actions of a larva are regularly refined. In addition, video recording and tracking technologies constantly evolve. Consequently, automatic tagging tools for Drosophila larval behaviour must be retrained to learn new representations from new data. However, existing tools cannot transfer knowledge from large amounts of previously accumulated data.We introduce LarvaTagger, a piece of software that combines a pre-trained deep neural network, providing a continuous latent representation of larva actions for stereotypical behaviour identification, with a graphical user interface to manually tag the behaviour and train new automatic taggers with the updated ground truth.

RESULTS: We reproduced results from an automatic tagger with high accuracy, and we demonstrated that pre-training on large databases accelerates the training of a new tagger, achieving similar prediction accuracy using less data.

AVAILABILITY: All the code is free and open source. Docker images are also available. See gitlab.pasteur.fr/nyx/LarvaTagger.jl.

SUPPLEMENTARY INFORMATION: Supplementary material is available at Bioinformatics online.

View Publication Page
08/01/06 | Latent blue and red fluorophores based on the trimethyl lock.
Lavis LD, Chao T, Raines RT
Chembiochem: A European Journal of Chemical Biology. 2006 Aug;7(8):1151-4. doi: 10.1002/cbic.200500559