Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lippincottschwartz Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3945 Publications

Showing 2181-2190 of 3945 results
06/02/24 | Mechanosensory representation of wing deformations
Yarger AM, Maeda M, Siwanowicz I, Kajiyama H, Walker SM, Bomphrey RJ, Lin H
bioRxiv. 2024 Jun 02:. doi: 10.1101/2024.06.02.596338

Efficient representation of structural deformations is crucial for monitoring the instantaneous state of biological structures. Insects’ ability to encode wing deformations during flight demonstrates a general morphological computing principle applicable across sensory systems in nature as well as engineered systems. To characterize how relevant features are encoded, we measured and modelled displacement and strain across dragonfly wing surfaces in tethered and free flight. Functional interpretations were supported by neuroanatomical maps, and ablation and perturbation experiments. We find that signal redundancy is reduced by non-random sensor distributions and that morphology limits the stimulus space such that sensory systems can monitor natural states with few sensors. Deviations from the natural states are detected by a flexible population of additional sensors with many distinguishable activation patterns.

View Publication Page
12/23/19 | MeCP2 nuclear dynamics in live neurons results from low and high affinity chromatin interactions.
Piccolo FM, Liu Z, Dong P, Hsu C, Stoyanova EI, Rao A, Tjian R, Heintz N
eLife. 2019 Dec 23;8:. doi: 10.7554/eLife.51449

Methyl-CpG-binding-Protein 2 (MeCP2) is an abundant nuclear protein highly enriched in neurons. Here we report live-cell single-molecule imaging studies of the kinetic features of mouse MeCP2 at high spatial-temporal resolution. MeCP2 displays dynamic features that are distinct from both highly mobile transcription factors and immobile histones. Stable binding of MeCP2 in living neurons requires its methyl-binding domain and is sensitive to DNA modification levels. Diffusion of unbound MeCP2 is strongly constrained by weak, transient interactions mediated primarily by its AT-hook domains, and varies with the level of chromatin compaction and cell type. These findings extend previous studies of the role of the MeCP2 MBD in high affinity DNA binding to living neurons, and identify a new role for its AT-hooks domains as critical determinants of its kinetic behavior. They suggest that limited nuclear diffusion of MeCP2 in live neurons contributes to its local impact on chromatin structure and gene expression.

View Publication Page
06/19/20 | Meissner corpuscles and their spatially intermingled afferents underlie gentle touch perception
Nicole L. Neubarth , Alan J. Emanuel , Yin Liu , Mark W. Springel , Annie Handler , Qiyu Zhang , Brendan P. Lehnert , Chong Guo , Lauren L. Orefice , Amira Abdelaziz , Michelle M. DeLisle , Michael Iskols , Julia Rhyins , Soo J. Kim , Stuart J. Cattel , Wade Regehr , Christopher D. Harvey , Jan Drugowitsch , David D. Ginty
Science. 06/2020;368:eabb2751. doi: 10.1126/science.abb2751

The Meissner corpuscle, a mechanosensory end organ, was discovered more than 165 years ago and has since been found in the glabrous skin of all mammals, including that on human fingertips. Although prominently featured in textbooks, the function of the Meissner corpuscle is unknown. Neubarth et al. generated adult mice without Meissner corpuscles and used them to show that these corpuscles alone mediate behavioral responses to, and perception of, gentle forces (see the Perspective by Marshall and Patapoutian). Each Meissner corpuscle is innervated by two molecularly distinct, yet physiologically similar, mechanosensory neurons. These two neuronal subtypes are developmentally interdependent and their endings are intertwined within the corpuscle. Both Meissner mechanosensory neuron subtypes are homotypically tiled, ensuring uniform and complete coverage of the skin, yet their receptive fields are overlapping and offset with respect to each other. Science, this issue p. eabb2751; see also p. 1311 Light touch perception and fine sensorimotor control arise from spatially overlapping mechanoreceptors of the Meissner corpuscle. Meissner corpuscles are mechanosensory end organs that densely occupy mammalian glabrous skin. We generated mice that selectively lacked Meissner corpuscles and found them to be deficient in both perceiving the gentlest detectable forces acting on glabrous skin and fine sensorimotor control. We found that Meissner corpuscles are innervated by two mechanoreceptor subtypes that exhibit distinct responses to tactile stimuli. The anatomical receptive fields of these two mechanoreceptor subtypes homotypically tile glabrous skin in a manner that is offset with respect to one another. Electron microscopic analysis of the two Meissner afferents within the corpuscle supports a model in which the extent of lamellar cell wrappings of mechanoreceptor endings determines their force sensitivity thresholds and kinetic properties.

View Publication Page
02/28/22 | Melding Synthetic Molecules and Genetically Encoded Proteins to Forge New Tools for Neuroscience.
Kumar P, Lavis LD
Annual Review of Neuroscience. 2022 Feb 28:. doi: 10.1146/annurev-neuro-110520-030031

Unraveling the complexity of the brain requires sophisticated methods to probe and perturb neurobiological processes with high spatiotemporal control. The field of chemical biology has produced general strategies to combine the molecular specificity of small-molecule tools with the cellular specificity of genetically encoded reagents. Here, we survey the application, refinement, and extension of these hybrid small-molecule:protein methods to problems in neuroscience, which yields powerful reagents to precisely measure and manipulate neural systems. Expected final online publication date for the , Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

View Publication Page
02/28/22 | Melding Synthetic Molecules and Genetically Encoded Proteins to Forge New Tools for Neuroscience.
Kumar P, Lavis LD
Annual Review Neuroscience. 2022 Feb 28:. doi: 10.1146/annurev-neuro-110520-030031

Unraveling the complexity of the brain requires sophisticated methods to probe and perturb neurobiological processes with high spatiotemporal control. The field of chemical biology has produced general strategies to combine the molecular specificity of small-molecule tools with the cellular specificity of genetically encoded reagents. Here, we survey the application, refinement, and extension of these hybrid small-molecule:protein methods to problems in neuroscience, which yields powerful reagents to precisely measure and manipulate neural systems. Expected final online publication date for the , Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

View Publication Page
07/08/22 | Melding Synthetic Molecules and Genetically Encoded Proteins to Forge New Tools for Neuroscience.
Kumar P, Lavis LD
Annual Review Neuroscience. 2022 Jul 08;45:131-150. doi: 10.1146/annurev-neuro-110520-030031

Unraveling the complexity of the brain requires sophisticated methods to probe and perturb neurobiological processes with high spatiotemporal control. The field of chemical biology has produced general strategies to combine the molecular specificity of small-molecule tools with the cellular specificity of genetically encoded reagents. Here, we survey the application, refinement, and extension of these hybrid small-molecule:protein methods to problems in neuroscience, which yields powerful reagents to precisely measure and manipulate neural systems.

View Publication Page
05/08/18 | Membrane bending moduli of coexisting liquid phases containing transmembrane peptide.
Usery RD, Enoki TA, Wickramasinghe SP, Nguyen VP, Ackerman DG, Greathouse DV, Koeppe RE, Barrera FN, Feigenson GW
Biophys J. 2018 May 08;114(9):2152-2164. doi: 10.1016/j.bpj.2018.03.026

A number of highly curved membranes in vivo, such as epithelial cell microvilli, have the relatively high sphingolipid content associated with "raft-like" composition. Given the much lower bending energy measured for bilayers with "nonraft" low sphingomyelin and low cholesterol content, observing high curvature for presumably more rigid compositions seems counterintuitive. To understand this behavior, we measured membrane rigidity by fluctuation analysis of giant unilamellar vesicles. We found that including a transmembrane helical GWALP peptide increases the membrane bending modulus of the liquid-disordered (Ld) phase. We observed this increase at both low-cholesterol fraction and higher, more physiological cholesterol fraction. We find that simplified, commonly used Ld and liquid-ordered (Lo) phases are not representative of those that coexist. When Ld and Lo phases coexist, GWALP peptide favors the Ld phase with a partition coefficient of 3-10 depending on mixture composition. In model membranes at high cholesterol fractions, Ld phases with GWALP have greater bending moduli than the Lo phase that would coexist.

View Publication Page
10/31/17 | Membrane dynamics and organelle biogenesis-lipid pipelines and vesicular carriers.
Stefan CJ, Trimble WS, Grinstein S, Drin G, Reinisch K, De Camilli P, Cohen S, Valm AM, Lippincott-Schwartz J, Levine TP, Iaea DB, Maxfield FR, Futter CE, Eden ER, Judith D, van Vliet AR, Agostinis P, Tooze SA, Sugiura A, McBride HM
BMC Biology. 2017 Oct 31;15(1):102. doi: 10.1186/s12915-017-0432-0

Discoveries spanning several decades have pointed to vital membrane lipid trafficking pathways involving both vesicular and non-vesicular carriers. But the relative contributions for distinct membrane delivery pathways in cell growth and organelle biogenesis continue to be a puzzle. This is because lipids flow from many sources and across many paths via transport vesicles, non-vesicular transfer proteins, and dynamic interactions between organelles at membrane contact sites. This forum presents our latest understanding, appreciation, and queries regarding the lipid transport mechanisms necessary to drive membrane expansion during organelle biogenesis and cell growth.

View Publication Page
08/17/16 | Membrane dynamics of dividing cells imaged by lattice light-sheet microscopy.
Aguet F, Upadhyayula S, Gaudin R, Chou Y, Cocucci E, He K, Chen B, Mosaliganti K, Pasham M, Skillern W, Legant WR, Liu T, Findlay G, Marino E, Danuser G, Megason S, Betzig E, Kirchhausen T
Molecular Biology of the Cell. 2016 Aug 17;27(22):3418-35. doi: 10.1091/mbc.E16-03-0164

Membrane remodeling is an essential part for transfer of components to and from the cell surface and membrane-bound organelles, and for changes in cell shape, particularly critical during cell division. Earlier analyses, based on classical optical live-cell imaging, mostly restricted by technical necessity to the attached bottom surface, showed persistent formation of endocytic clathrin pits and vesicles during mitosis. Taking advantage of the resolution, speed, and non-invasive illumination of the newly developed lattice light sheet fluorescence microscope, we reexamined their assembly dynamics over the entire cell surface and showed that clathrin pits form at a lower rate during late mitosis. Full-cell imaging measurements of cell surface area and volume throughout the cell cycle of single cells in culture and in zebrafish embryos showed that the total surface increased rapidly during the transition from telophase to cytokinesis, whereas cell volume increased slightly in metaphase and remained relatively constant during cytokinesis. These applications demonstrate the advantage of lattice light sheet microscopy and enable a new standard for imaging membrane dynamics in single cells and in multicellular assemblies.

View Publication Page
07/01/20 | Membrane potential dynamics underlying context-dependent sensory responses in the hippocampus.
Zhao X, Wang Y, Spruston N, Magee JC
Nature Neuroscience. 2020 Jul 1;23(7):881-91. doi: 10.1038/s41593-020-0646-2

As animals navigate, they must identify features within context. In the mammalian brain, the hippocampus has the ability to separately encode different environmental contexts, even when they share some prominent features. To do so, neurons respond to sensory features in a context-dependent manner; however, it is not known how this encoding emerges. To examine this, we performed electrical recordings in the hippocampus as mice navigated in two distinct virtual environments. In CA1, both synaptic input to single neurons and population activity strongly tracked visual cues in one environment, whereas responses were almost completely absent when the same cue was presented in a second environment. A very similar, highly context-dependent pattern of cue-driven spiking was also observed in CA3. These results indicate that CA1 inherits a complex spatial code from upstream regions, including CA3, that have already computed a context-dependent representation of environmental features.

View Publication Page