Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lippincottschwartz Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3945 Publications

Showing 2401-2410 of 3945 results
02/15/13 | NBR1 acts as an autophagy receptor for peroxisomes.
Deosaran E, Larsen KB, Hua R, Sargent G, Wang Y, Kim S, Lamark T, Jauregui M, Law K, Lippincott-Schwartz J, Brech A, Johansen T, Kim PK
Journal of cell science. 2013 Feb 15;126(Pt 4):939-52. doi: 10.1242/jcs.114819

Selective macro-autophagy is an intracellular process by which large cytoplasmic materials are selectively sequestered and degraded in the lysosomes. Substrate selection is mediated by ubiquitylation and recruitment of ubiquitin-binding autophagic receptors such as p62, NBR1, NDP52 and Optineurin. Although it has been shown that these receptors act cooperatively to target some types of substrates to nascent autophagosomes, their precise roles are not well understood. We examined selective autophagic degradation of peroxisomes (pexophagy), and found that NBR1 is necessary and sufficient for pexophagy. Mutagenesis studies of NBR1 showed that the amphipathic α-helical J domain, the ubiquitin-associated (UBA) domain, the LC3-interacting region and the coiled-coil domain are necessary to mediate pexophagy. Strikingly, substrate selectivity is partly achieved by NBR1 itself by coincident binding of the J and UBA domains to peroxisomes. Although p62 is not required when NBR1 is in excess, its binding to NBR1 increases the efficiency of NBR1-mediated pexophagy. Together, these results suggest that NBR1 is the specific autophagy receptor for pexophagy.

View Publication Page
06/14/19 | NDP52 tunes cortical actin interaction with astral microtubules for accurate spindle orientation.
Yu H, Yang F, Dong P, Liao S, Liu WR, Zhao G, Qin B, Dou Z, Liu Z, Liu W, Zang J, Lippincott-Schwartz J, Liu X, Yao X
Cell Research. 2019 Jun 14;29(8):666-79. doi: 10.1038/s41422-019-0189-9

Oriented cell divisions are controlled by a conserved molecular cascade involving Gαi, LGN, and NuMA. Here, we show that NDP52 regulates spindle orientation via remodeling the polar cortical actin cytoskeleton. siRNA-mediated NDP52 suppression surprisingly revealed a ring-like compact subcortical F-actin architecture surrounding the spindle in prophase/prometaphase cells, which resulted in severe defects of astral microtubule growth and an aberrant spindle orientation. Remarkably, NDP52 recruited the actin assembly factor N-WASP and regulated the dynamics of the subcortical F-actin ring in mitotic cells. Mechanistically, NDP52 was found to bind to phosphatidic acid-containing vesicles, which absorbed cytoplasmic N-WASP to regulate local filamentous actin growth at the polar cortex. Our TIRFM analyses revealed that NDP52-containing vesicles anchored N-WASP and shortened the length of actin filaments in vitro. Based on these results we propose that NDP52-containing vesicles regulate cortical actin dynamics through N-WASP to accomplish a spatiotemporal regulation between astral microtubules and the actin network for proper spindle orientation and precise chromosome segregation. In this way, intracellular vesicles cooperate with microtubules and actin filaments to regulate proper mitotic progression. Since NDP52 is absent from yeast, we reason that metazoans have evolved an elaborate spindle positioning machinery to ensure accurate chromosome segregation in mitosis.

View Publication Page
08/07/17 | Near-atomic resolution cryoelectron microscopy structure of the 30-fold homooligomeric SpoIIIAG channel essential to spore formation in Bacillus subtilis.
Zeytuni N, Hong C, Flanagan KA, Worrall LJ, Theiltges KA, Vuckovic M, Huang RK, Massoni SC, Camp AH, Yu Z, Strynadka NC
Proceedings of the National Academy of Sciences of the United States of America. 2017 Aug 07:. doi: 10.1073/pnas.1704310114

Bacterial sporulation allows starving cells to differentiate into metabolically dormant spores that can survive extreme conditions. Following asymmetric division, the mother cell engulfs the forespore, surrounding it with two bilayer membranes. During the engulfment process, an essential channel, the so-called feeding tube apparatus, is thought to cross both membranes to create a direct conduit between the mother cell and the forespore. At least nine proteins are required to create this channel, including SpoIIQ and SpoIIIAA-AH. Here, we present the near-atomic resolution structure of one of these proteins, SpoIIIAG, determined by single-particle cryo-EM. A 3D reconstruction revealed that SpoIIIAG assembles into a large and stable 30-fold symmetric complex with a unique mushroom-like architecture. The complex is collectively composed of three distinctive circular structures: a 60-stranded vertical β-barrel that forms a large inner channel encircled by two concentric rings, one β-mediated and the other formed by repeats of a ring-building motif (RBM) common to the architecture of various dual membrane secretion systems of distinct function. Our near-atomic resolution structure clearly shows that SpoIIIAG exhibits a unique and dramatic adaptation of the RBM fold with a unique β-triangle insertion that assembles into the prominent channel, the dimensions of which suggest the potential passage of large macromolecules between the mother cell and forespore during the feeding process. Indeed, mutation of residues located at key interfaces between monomers of this RBM resulted in severe defects both in vivo and in vitro, providing additional support for this unprecedented structure.

View Publication Page
Grigorieff Lab
04/01/11 | Near-atomic resolution reconstructions of icosahedral viruses from electron cryo-microscopy.
Grigorieff N, Harrison SC
Current Opinion in Structural Biology. 2011 Apr;21(2):265-73. doi: 10.1016/j.sbi.2011.01.008

Nine different near-atomic resolution structures of icosahedral viruses, determined by electron cryo-microscopy and published between early 2008 and late 2010, fulfil predictions made 15 years ago that single-particle cryo-EM techniques could visualize molecular detail at 3-4A resolution. This review summarizes technical developments, both in instrumentation and in computation, that have led to the new structures, which advance our understanding of virus assembly and cell entry.

View Publication Page
12/14/16 | Near-atomic-resolution cryo-EM analysis of the Salmonella T3S injectisome basal body.
Worrall LJ, Hong C, Vuckovic M, Deng W, Bergeron JR, Majewski DD, Huang RK, Spreter T, Finlay BB, Yu Z, Strynadka NC
Nature. 2016 Dec 14:. doi: 10.1038/nature20576

The type III secretion (T3S) injectisome is a specialized protein nanomachine that is critical for the pathogenicity of many Gram-negative bacteria, including purveyors of plague, typhoid fever, whooping cough, sexually transmitted infections and major nosocomial infections. This syringe-shaped 3.5-MDa macromolecular assembly spans both bacterial membranes and that of the infected host cell. The internal channel formed by the injectisome allows for the direct delivery of partially unfolded virulence effectors into the host cytoplasm. The structural foundation of the injectisome is the basal body, a molecular lock-nut structure composed predominantly of three proteins that form highly oligomerized concentric rings spanning the inner and outer membranes. Here we present the structure of the prototypical Salmonella enterica serovar Typhimurium pathogenicity island 1 basal body, determined using single-particle cryo-electron microscopy, with the inner-membrane-ring and outer-membrane-ring oligomers defined at 4.3 Å and 3.6 Å resolution, respectively. This work presents the first, to our knowledge, high-resolution structural characterization of the major components of the basal body in the assembled state, including that of the widespread class of outer-membrane portals known as secretins.

View Publication Page
09/01/93 | Near-field fluorescence imaging of cytoskeletal actin. (With commentary)
Betzig E, Chichester RJ, Lanni F, Taylor DL
Bioimaging. 1993 Sep;1(3):129-35

Near-field scanning optical microscopy (NSOM) has been used to generate high resolution flourescence images of cytoskeletal actin within fixed mouse fibroblast cells. Comparison with other microscopic methods indicates a transverse resolution well beyond that of confocal microscopy, and contrast far more revealing than in force microscopy. Effects unique to the near field are shown to be involved in the excitation of flourescence, yet the resulting images remain readily interpretable. As an initial demonstration of its utility, the technique is used to analyze the actin-based cytoskeletal structure between stress fibers and in cellular protrusions formed in the process of wound healing.

Commentary: The first superresolution fluorescence imaging of a biological system: the actin cytoskeleton in fixed, cultured fibroblast cells. This work strongly influenced me in two ways. First, calculations based on the signal-to-noise-ratio in images of single actin filaments in the paper suggested that single molecule imaging might be feasible. This was soon proven to be the case (see above). Second, the limitations of exogenous labeling for superresolution microscopy were revealed: samples which appeared correctly stained by conventional microscopy often exhibited sketchy, punctuate labeling of actin filaments as well as substantial non-specific background in the corresponding near field images. Indeed, it was the advent of GFP, with its promise of dense labeling and perfect specificity, that lured me back to superresolution microscopy when I first heard of it in 2003.

View Publication Page
01/01/92 | Near-field magneto-optics and high density data storage. (With commentary)
Betzig E, Trautman JK, Wolfe R, Gyorgy EM, Finn PL, Kryder MH, Chang CH
Applied Physics Letters.. 1992;61:

Near-field scanning optical microscopy (NSOM) has been used to image and record domains in thin-film magneto-optic (MO) materials. In the imaging mode, resolution of 30-50 nm has been consistently obtained, whereas in the recording mode, domains down to -60 nm have been written reproducibly. Data densities of -45 Gbits/in.’ have been achieved, well in excess of current magnetic or MO technologies. A brief analysis of speed and other issues indicates that the technique may represent a viable alternative to density data storage needs.

Commentary: The first demonstration of optical recording and playback beyond the diffraction limit, using magneto-optic multilayer films and polarization contrast near-field microscopy. Bits as small as 60 nm were recorded – beyond estimates at the time of the superparamagnetic limit to bit stability. Bit densities of 45 Gbits/in2 were also achieved, well in excess of optical or magnetic recording technologies of the era. In the years following this work, massive resources were spent on the commercialization of near-field data storage, largely for naught.

View Publication Page
07/10/92 | Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. (With commentary)
Betzig E, Trautman JK
Science. 1992 Jul 10;257(5067):189-95. doi: 10.1126/science.257.5067.189

The near-field optical interaction between a sharp probe and a sample of interest can be exploited to image, spectroscopically probe, or modify surfaces at a resolution (down to approximately 12 nm) inaccessible by traditional far-field techniques. Many of the attractive features of conventional optics are retained, including noninvasiveness, reliability, and low cost. In addition, most optical contrast mechanisms can be extended to the near-field regime, resulting in a technique of considerable versatility. This versatility is demonstrated by several examples, such as the imaging of nanometric-scale features in mammalian tissue sections and the creation of ultrasmall, magneto-optic domains having implications for highdensity data storage. Although the technique may find uses in many diverse fields, two of the most exciting possibilities are localized optical spectroscopy of semiconductors and the fluorescence imaging of living cells.

Commentary: An overview of our work in near-field optics at the time, after our invention of the adiabatically tapered fiber probe and shear force feedback (see below) led to the first practical near-field scanning optical microscope. In this work, superresolution imaging via absorption, reflectivity, fluorescence, spectroscopy, polarization, and refractive index contrast were all demonstrated. Unlike all far-field superresolution fluorescence methods that were to appear a decade later, near-field microscopy remains the only superresolution technique capable of taking advantage of the full panoply of optical contrast mechanisms.

View Publication Page
06/17/94 | Near-field spectroscopy of the quantum constituents of a luminescent system.
Hess HF, Betzig E, Harris TD, Pfeiffer LN, West KW
Science. 1994 Jun 17;264(5166):1740-5. doi: 10.1126/science.264.5166.1740

Luminescent centers with sharp (<0.07 millielectron volt), spectrally distinct emission lines were imaged in a GaAs/AIGaAs quantum well by means of low-temperature near-field scanning optical microscopy. Temperature, magnetic field, and linewidth measurements establish that these centers arise from excitons laterally localized at interface fluctuations. For sufficiently narrow wells, virtually all emission originates from such centers. Near-field microscopy/spectroscopy provides a means to access energies and homogeneous line widths for the individual eigenstates of these centers, and thus opens a rich area of physics involving quantum resolved systems.

View Publication Page
06/17/94 | Near-field spectroscopy of the quantum constituents of a luminescent system. (With commentary)
Hess HF, Betzig E, Harris TD, Pfeiffer LN, West KW
Science. 1994 Jun 17;264(5166):1740-5. doi: 10.1126/science.264.5166.1740

Luminescent centers with sharp (<0.07 millielectron volt), spectrally distinct emission lines were imaged in a GaAs/AIGaAs quantum well by means of low-temperature near-field scanning optical microscopy. Temperature, magnetic field, and linewidth measurements establish that these centers arise from excitons laterally localized at interface fluctuations. For sufficiently narrow wells, virtually all emission originates from such centers. Near-field microscopy/spectroscopy provides a means to access energies and homogeneous line widths for the individual eigenstates of these centers, and thus opens a rich area of physics involving quantum resolved systems.

Commentary: Harald Hess and I joined forces, combining my near-field optical technology with his cryogenic scanned probe microscope to produce the first paper on high resolution spectroscopy beyond the diffraction limit. We discovered that the broad luminescence spectrum traditionally observed from quantum well heterostructures reflects a resolution-limited ensemble average of emission from numerous discrete sites of exciton recombination occurring at atomic-scale corrugations in the confining interfaces. With the combination of high spatial resolution from near-field excitation and high spectral resolution from cryogenic operation, we were able to isolate these emission sites in a multidimensional space of xy position and wavelength, even though their density was too great to isolate them on the basis of spatial resolution alone. This insight was very influential in the genesis of the concept (see above) that would eventually lead to far-field superresolution by PALM.

View Publication Page