Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lippincottschwartz Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3945 Publications

Showing 2421-2430 of 3945 results
10/25/02 | Network motifs: simple building blocks of complex networks.
Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U
Science. 2002 Oct 25;298(5687):824-7

Complex networks are studied across many fields of science. To uncover their structural design principles, we defined “network motifs,” patterns of interconnections occurring in complex networks at numbers that are significantly higher than those in randomized networks. We found such motifs in networks from biochemistry, neurobiology, ecology, and engineering. The motifs shared by ecological food webs were distinct from the motifs shared by the genetic networks of Escherichia coli and Saccharomyces cerevisiae or from those found in the World Wide Web. Similar motifs were found in networks that perform information processing, even though they describe elements as different as biomolecules within a cell and synaptic connections between neurons in Caenorhabditis elegans. Motifs may thus define universal classes of networks. This approach may uncover the basic building blocks of most networks.

View Publication Page
10/05/12 | Network resets in medial prefrontal cortex mark the onset of behavioral uncertainty.
Karlsson MP, Tervo DG, Karpova AY
Science. 2012 Oct 5;338:135-9. doi: 10.1126/science.1226518

Regions within the prefrontal cortex are thought to process beliefs about the world, but little is known about the circuit dynamics underlying the formation and modification of these beliefs. Using a task that permits dissociation between the activity encoding an animal’s internal state and that encoding aspects of behavior, we found that transient increases in the volatility of activity in the rat medial prefrontal cortex accompany periods when an animal’s belief is modified after an environmental change. Activity across the majority of sampled neurons underwent marked, abrupt, and coordinated changes when prior belief was abandoned in favor of exploration of alternative strategies. These dynamics reflect network switches to a state of instability, which diminishes over the period of exploration as new stable representations are formed.

View Publication Page
07/29/23 | Network Statistics of the Whole-Brain Connectome of Drosophila
Albert Lin , Runzhe Yang , Sven Dorkenwald , Arie Matsliah , Amy R. Sterling , Philipp Schlegel , Szi-chieh Yu , Claire E. McKellar , Marta Costa , Katharina Eichler , Alexander Shakeel Bates , Nils Eckstein , Jan Funke , Gregory S.X.E. Jefferis , Mala Murthy
bioRxiv. 2023 Jul 29:. doi: 10.1101/2023.07.29.551086

Animal brains are complex organs composed of thousands of interconnected neurons. Characterizing the network properties of these brains is a requisite step towards understanding mechanisms of computation and information flow. With the completion of the Flywire project, we now have access to the connectome of a complete adult Drosophila brain, containing 130,000 neurons and millions of connections. Here, we present a statistical summary and data products of the Flywire connectome, delving into its network properties and topological features. To gain insights into local connectivity, we computed the prevalence of two- and three-node network motifs, examined their strengths and neurotransmitter compositions, and compared these topological metrics with wiring diagrams of other animals. We uncovered a population of highly connected neurons known as the “rich club” and identified subsets of neurons that may serve as integrators or broadcasters of signals. Finally, we examined subnetworks based on 78 anatomically defined brain regions. The freely available data and neuron populations presented here will serve as a foundation for models and experiments exploring the relationship between neural activity and anatomical structure.

View Publication Page
Murphy Lab
11/09/06 | Network variability limits stimulus-evoked spike timing precision in retinal ganglion cells.
Murphy GJ, Rieke F
Neuron. 2006 Nov 9;52(3):511-24. doi: 10.1016/j.neuron.2006.09.014

Visual, auditory, somatosensory, and olfactory stimuli generate temporally precise patterns of action potentials (spikes). It is unclear, however, how the precision of spike generation relates to the pattern and variability of synaptic input elicited by physiological stimuli. We determined how synaptic conductances evoked by light stimuli that activate the rod bipolar pathway control spike generation in three identified types of mouse retinal ganglion cells (RGCs). The relative amplitude, timing, and impact of excitatory and inhibitory input differed dramatically between On and Off RGCs. Spikes evoked by repeated somatic injection of identical light-evoked synaptic conductances were more temporally precise than those evoked by light. However, the precision of spikes evoked by conductances that varied from trial to trial was similar to that of light-evoked spikes. Thus, the rod bipolar pathway modulates different RGCs via unique combinations of synaptic input, and RGC temporal variability reflects variability in the input this circuit provides.

View Publication Page
11/02/17 | Network-size independent covering number bounds for deep networks.
Kabra M, Branson KM
arXiv. 2017 Nov 02:arXiv:1711.00753

We give a covering number bound for deep learning networks that is independent of the size of the network. The key for the simple analysis is that for linear classifiers, rotating the data doesn't affect the covering number. Thus, we can ignore the rotation part of each layer's linear transformation, and get the covering number bound by concentrating on the scaling part.

View Publication Page
07/20/22 | neuPrint: An open access tool for EM connectomics.
Plaza SM, Clements J, Dolafi T, Umayam L, Neubarth NN, Scheffer LK, Berg S
Frontiers in Neuroinformatics. 2022 Jul 20;16:896292. doi: 10.3389/fninf.2022.896292

Due to advances in electron microscopy and deep learning, it is now practical to reconstruct a connectome, a description of neurons and the chemical synapses between them, for significant volumes of neural tissue. Smaller past reconstructions were primarily used by domain experts, could be handled by downloading data, and performance was not a serious problem. But new and much larger reconstructions upend these assumptions. These networks now contain tens of thousands of neurons and tens of millions of connections, with yet larger reconstructions pending, and are of interest to a large community of non-specialists. Allowing other scientists to make use of this data needs more than publication-it requires new tools that are publicly available, easy to use, and efficiently handle large data. We introduce neuPrint to address these data analysis challenges. Neuprint contains two major components-a web interface and programmer APIs. The web interface is designed to allow any scientist worldwide, using only a browser, to quickly ask and answer typical biological queries about a connectome. The neuPrint APIs allow more computer-savvy scientists to make more complex or higher volume queries. NeuPrint also provides features for assessing reconstruction quality. Internally, neuPrint organizes connectome data as a graph stored in a neo4j database. This gives high performance for typical queries, provides access though a public and well documented query language Cypher, and will extend well to future larger connectomics databases. Our experience is also an experiment in open science. We find a significant fraction of the readers of the article proceed to examine the data directly. In our case preprints worked exactly as intended, with data inquiries and PDF downloads starting immediately after pre-print publication, and little affected by formal publication later. From this we deduce that many readers are more interested in our data than in our analysis of our data, suggesting that data-only papers can be well appreciated and that public data release can speed up the propagation of scientific results by many months. We also find that providing, and keeping, the data available for online access imposes substantial additional costs to connectomics research.

View Publication Page
Looger LabSchreiter Lab
01/01/12 | Neural activity imaging with genetically encoded calcium indicators.
Tian L, Akerboom J, Schreiter ER, Looger LL
Progress in Brain Research. 2012;196:79-94. doi: 10.1016/B978-0-444-59426-6.00005-7

Genetically encoded calcium indicators (GECIs), together with modern microscopy, allow repeated activity measurement, in real time and with cellular resolution, of defined cellular populations. Recent efforts in protein engineering have yielded several high-quality GECIs that facilitate new applications in neuroscience. Here, we summarize recent progress in GECI design, optimization, and characterization, and provide guidelines for selecting the appropriate GECI for a given biological application. We focus on the unique challenges associated with imaging in behaving animals.

View Publication Page
Svoboda Lab
09/23/10 | Neural activity in barrel cortex underlying vibrissa-based object localization in mice.
O’Connor DH, Peron SP, Huber D, Svoboda K
Neuron. 2010 Sep 23;67(6):1048-61. doi: 10.1016/j.neuron.2010.08.026

Classical studies have related the spiking of selected neocortical neurons to behavior, but little is known about activity sampled from the entire neural population. We recorded from neurons selected independent of spiking, using cell-attached recordings and two-photon calcium imaging, in the barrel cortex of mice performing an object localization task. Spike rates varied across neurons, from silence to >60 Hz. Responses were diverse, with some neurons showing large increases in spike rate when whiskers contacted the object. Nearly half the neurons discriminated object location; a small fraction of neurons discriminated perfectly. More active neurons were more discriminative. Layer (L) 4 and L5 contained the highest fractions of discriminating neurons (\~{}63% and 79%, respectively), but a few L2/3 neurons were also highly discriminating. Approximately 13,000 spikes per activated barrel column were available to mice for decision making. Coding of object location in the barrel cortex is therefore highly redundant.

View Publication Page
Romani LabSvoboda Lab
02/22/22 | Neural Algorithms and Circuits for Motor Planning.
Inagaki HK, Chen S, Daie K, Finklestein A, Fontolan L, Romani S, Svoboda K
Annual Reviews Neuroscience. 2022 Feb 22:. doi: 10.1146/annurev-neuro-092021-121730

The brain plans and executes volitional movements. The underlying patterns of neural population activity have been explored in the context of movements of the eyes, limbs, tongue, and head in nonhuman primates and rodents. How do networks of neurons produce the slow neural dynamics that prepare specific movements and the fast dynamics that ultimately initiate these movements? Recent work exploits rapid and calibrated perturbations of neural activity to test specific dynamical systems models that are capable of producing the observed neural activity. These joint experimental and computational studies show that cortical dynamics during motor planning reflect fixed points of neural activity (attractors). Subcortical control signals reshape and move attractors over multiple timescales, causing commitment to specific actions and rapid transitions to movement execution. Experiments in rodents are beginning to reveal how these algorithms are implemented at the level of brain-wide neural circuits. Expected final online publication date for the , Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

View Publication Page
Romani LabSvoboda Lab
07/08/22 | Neural Algorithms and Circuits for Motor Planning.
Inagaki HK, Chen S, Daie K, Finkelstein A, Fontolan L, Romani S, Svoboda K
Annual Review Neuroscience. 2022 Jul 08;45:249-271. doi: 10.1146/annurev-neuro-092021-121730

The brain plans and executes volitional movements. The underlying patterns of neural population activity have been explored in the context of movements of the eyes, limbs, tongue, and head in nonhuman primates and rodents. How do networks of neurons produce the slow neural dynamics that prepare specific movements and the fast dynamics that ultimately initiate these movements? Recent work exploits rapid and calibrated perturbations of neural activity to test specific dynamical systems models that are capable of producing the observed neural activity. These joint experimental and computational studies show that cortical dynamics during motor planning reflect fixed points of neural activity (attractors). Subcortical control signals reshape and move attractors over multiple timescales, causing commitment to specific actions and rapid transitions to movement execution. Experiments in rodents are beginning to reveal how these algorithms are implemented at the level of brain-wide neural circuits.

View Publication Page