Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lippincottschwartz Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3947 Publications

Showing 2591-2600 of 3947 results
08/15/24 | Olfactory sensory neuron population expansions influence projection neuron adaptation and enhance odour tracking
Suguru Takagi , Liliane Abuin , S. David Stupski , J. Roman Arguello , Lucia Prieto-Godino , David L. Stern , Steeve Cruchet , Raquel Álvarez-Ocaña , Carl F. R. Wienecke , Floris van Breugel , Thomas O. Auer , Richard Benton
Nat Commun. 2024 Aug 15;15(7041):. doi: 10.1038/s41467-024-50808-w

The evolutionary expansion of sensory neuron populations detecting important environmental cues is widespread, but functionally enigmatic. We investigated this phenomenon through comparison of homologous olfactory pathways of Drosophila melanogaster and its close relative Drosophila sechellia, an extreme specialist for Morinda citrifolia noni fruit. D. sechellia has evolved species-specific expansions in select, noni-detecting olfactory sensory neuron (OSN) populations, through multigenic changes. Activation and inhibition of defined proportions of neurons demonstrate that OSN number increases contribute to stronger, more persistent, noni-odour tracking behaviour. These expansions result in increased synaptic connections of sensory neurons with their projection neuron (PN) partners, which are conserved in number between species. Surprisingly, having more OSNs does not lead to greater odour-evoked PN sensitivity or reliability. Rather, pathways with increased sensory pooling exhibit reduced PN adaptation, likely through weakened lateral inhibition. Our work reveals an unexpected functional impact of sensory neuron population expansions to explain ecologically-relevant, species-specific behaviour.

View Publication Page
11/29/22 | Oligodendrocyte precursor cells ingest axons in the mouse neocortex.
Buchanan J, Elabbady L, Collman F, Jorstad NL, Bakken TE, Ott C, Glatzer J, Bleckert AA, Bodor AL, Brittain D, Bumbarger DJ, Mahalingam G, Seshamani S, Schneider-Mizell C, Takeno MM, Torres R, Yin W, Hodge RD, Castro M, Dorkenwald S, Ih D, Jordan CS, Kemnitz N, Lee K, Lu R, Macrina T, Mu S, Popovych S, Silversmith WM, Tartavull I, Turner NL, Wilson AM, Wong W, Wu J, Zlateski A, Zung J, Lippincott-Schwartz J, Lein ES, Seung HS, Bergles DE, Reid RC, da Costa NM
Proceedings of the National Academies of Science of the U.S.A.. 2022 Nov 29;119(48):e2202580119. doi: 10.1073/pnas.2202580119

Neurons in the developing brain undergo extensive structural refinement as nascent circuits adopt their mature form. This physical transformation of neurons is facilitated by the engulfment and degradation of axonal branches and synapses by surrounding glial cells, including microglia and astrocytes. However, the small size of phagocytic organelles and the complex, highly ramified morphology of glia have made it difficult to define the contribution of these and other glial cell types to this crucial process. Here, we used large-scale, serial section transmission electron microscopy (TEM) with computational volume segmentation to reconstruct the complete 3D morphologies of distinct glial types in the mouse visual cortex, providing unprecedented resolution of their morphology and composition. Unexpectedly, we discovered that the fine processes of oligodendrocyte precursor cells (OPCs), a population of abundant, highly dynamic glial progenitors, frequently surrounded small branches of axons. Numerous phagosomes and phagolysosomes (PLs) containing fragments of axons and vesicular structures were present inside their processes, suggesting that OPCs engage in axon pruning. Single-nucleus RNA sequencing from the developing mouse cortex revealed that OPCs express key phagocytic genes at this stage, as well as neuronal transcripts, consistent with active axon engulfment. Although microglia are thought to be responsible for the majority of synaptic pruning and structural refinement, PLs were ten times more abundant in OPCs than in microglia at this stage, and these structures were markedly less abundant in newly generated oligodendrocytes, suggesting that OPCs contribute substantially to the refinement of neuronal circuits during cortical development.

View Publication Page
09/01/23 | OME-Zarr: a cloud-optimized bioimaging file format with international community support.
Josh Moore , Daniela Basurto-Lozada , Sébastien Besson , John Bogovic , Eva M. Brown , Jean-Marie Burel , Gustavo de Medeiros , Erin E. Diel , David Gault , Satrajit S. Ghosh , Ilan Gold , Yaroslav O. Halchenko , Matthew Hartley , Dave Horsfall , Mark S. Keller , Mark Kittisopikul , Gabor Kovacs , Aybüke Küpcü Yoldaş , Albane le Tournoulx de la Villegeorges , Tong Li , Prisca Liberali , Melissa Linkert , Dominik Lindner , Joel Lüthi , Jeremy Maitin-Shepard , Trevor Manz , Matthew McCormick , Khaled Mohamed , William Moore , Bugra Özdemir , Constantin Pape , Lucas Pelkmans , Martin Prete , Tobias Pietzsch , Stephan Preibisch , Norman Rzepka , David R. Stirling , Jonathan Striebel , Christian Tischer , Daniel Toloudis , Petr Walczysko , Alan M. Watson , Frances Wong , Kevin A. Yamauchi , Omer Bayraktar , Muzlifah Haniffa , Stephan Saalfeld , Jason R. Swedlow
Histochemistry and Cell Biology. 2023 Feb 25;160(3):223-251. doi: 10.1007/s00418-023-02209-1

A growing community is constructing a next-generation file format (NGFF) for bioimaging to overcome problems of scalability and heterogeneity. Organized by the Open Microscopy Environment (OME), individuals and institutes across diverse modalities facing these problems have designed a format specification process (OME-NGFF) to address these needs. This paper brings together a wide range of those community members to describe the format itself – OME-Zarr – along with tools and data resources available today to increase FAIR access and remove barriers in the scientific process. The current momentum offers an opportunity to unify a key component of the bioimaging domain — the file format that underlies so many personal, institutional, and global data management and analysis tasks.

View Publication Page
Kainmueller Lab
12/14/12 | Omnidirectional displacements for deformable surfaces.
Kainmueller D, Lamecker H, Heller MO, Weber B, Hege H, Zachow S
Medical image analysis. 2013 May;17(4):429-41. doi: 10.1016/j.media.2012.11.006

Deformable surface models are often represented as triangular meshes in image segmentation applications. For a fast and easily regularized deformation onto the target object boundary, the vertices of the mesh are commonly moved along line segments (typically surface normals). However, in case of high mesh curvature, these lines may not intersect with the target boundary at all. Consequently, certain deformations cannot be achieved. We propose omnidirectional displacements for deformable surfaces (ODDS) to overcome this limitation. ODDS allow each vertex to move not only along a line segment but within the volumetric inside of a surrounding sphere, and achieve globally optimal deformations subject to local regularization constraints. However, allowing a ball-shaped instead of a linear range of motion per vertex significantly increases runtime and memory. To alleviate this drawback, we propose a hybrid approach, fastODDS, with improved runtime and reduced memory requirements. Furthermore, fastODDS can also cope with simultaneous segmentation of multiple objects. We show the theoretical benefits of ODDS with experiments on synthetic data, and evaluate ODDS and fastODDS quantitatively on clinical image data of the mandible and the hip bones. There, we assess both the global segmentation accuracy as well as local accuracy in high curvature regions, such as the tip-shaped mandibular coronoid processes and the ridge-shaped acetabular rims of the hip bones.

View Publication Page
07/27/22 | Omnipose: a high-precision morphology-independent solution for bacterial cell segmentation
Kevin J. Cutler , Carsen Stringer , Paul A. Wiggins , Joseph D. Mougous
bioRxiv. 2022 Jul 27:. doi: 10.1101/2021.11.03.467199

Advances in microscopy hold great promise for allowing quantitative and precise readouts of morphological and molecular phenomena at the single cell level in bacteria. However, the potential of this approach is ultimately limited by the availability of methods to perform unbiased cell segmentation, defined as the ability to faithfully identify cells independent of their morphology or optical characteristics. In this study, we present a new algorithm, Omnipose, which accurately segments samples that present significant challenges to current algorithms, including mixed bacterial cultures, antibiotic-treated cells, and cells of extended or branched morphology. We show that Omnipose achieves generality and performance beyond leading algorithms and its predecessor, Cellpose, by virtue of unique neural network outputs such as the gradient of the distance field. Finally, we demonstrate the utility of Omnipose in the characterization of extreme morphological phenotypes that arise during interbacterial antagonism and on the segmentation of non-bacterial objects. Our results distinguish Omnipose as a uniquely powerful tool for answering diverse questions in bacterial cell biology.

View Publication Page
10/17/22 | Omnipose: a high-precision morphology-independent solution for bacterial cell segmentation.
Cutler KJ, Stringer C, Lo TW, Rappez L, Stroustrup N, Brook Peterson S, Wiggins PA, Mougous JD
Nature Methods. 2022 Oct 17:. doi: 10.1038/s41592-022-01639-4

Advances in microscopy hold great promise for allowing quantitative and precise measurement of morphological and molecular phenomena at the single-cell level in bacteria; however, the potential of this approach is ultimately limited by the availability of methods to faithfully segment cells independent of their morphological or optical characteristics. Here, we present Omnipose, a deep neural network image-segmentation algorithm. Unique network outputs such as the gradient of the distance field allow Omnipose to accurately segment cells on which current algorithms, including its predecessor, Cellpose, produce errors. We show that Omnipose achieves unprecedented segmentation performance on mixed bacterial cultures, antibiotic-treated cells and cells of elongated or branched morphology. Furthermore, the benefits of Omnipose extend to non-bacterial subjects, varied imaging modalities and three-dimensional objects. Finally, we demonstrate the utility of Omnipose in the characterization of extreme morphological phenotypes that arise during interbacterial antagonism. Our results distinguish Omnipose as a powerful tool for characterizing diverse and arbitrarily shaped cell types from imaging data.

View Publication Page
Baker Lab
02/01/80 | On the action of major loci affecting sex determination in Drosophila melanogaster.
Baker B, Ridge K
Genetics. 1980 Feb;94(2):383-423

Sex determination in Drosophila melanogaster is under the control of the X chromosome:autosome ratio and at least four major regulatory genes: transformer (tra), transformer-2 (tra-2), doublesex (dsx) and intersex (ix). Attention is focused here on the roles of these four loci in sex determination. By examining the sexual phenotype of clones of homozygous mutant cells produced by mitotic recombination in flies heterozygous for a given recessive sex-determination mutant, we have shown that the tra, tra-2 and dsx loci determine sex in a cell-autonomous manner. The effect of removing the wild-type allele of each locus (by mitotic recombination) at a number of times during development has been used to determine when the wild-type alleles of the tra, tra-2 and dsx loci have been transcribed sufficiently to support normal sexual development. The wild-type alleles of all three loci are needed into the early pupal period for normal sex determination in the cells that produce the sexually dimorphic (in pigmentation) cuticle of the fifth and sixth dorsal abdominal segments. tra(+) and tra-2(+) cease being needed shortly before the termination of cell division in the abdomen, whereas dsx(+) is required at least until the end of division. By contrast, in the foreleg, the wild-type alleles of tra(+) and tra-2(+) have functioned sufficiently for normal sexual differentiation to occur by about 24 to 48 hours before pupariation, but dsx(+) is required in the foreleg at least until pupariation.--A comparison of the phenotypes produced in mutant/deficiency and homozygous mutant-bearing flies shows that dsx, tra-2 and tra mutants result in a loss of wild-type function and probably represent null alleles at these genes.-All possible homozygous doublemutant combinations of ix, tra-2 and dsx have been constructed and reveal a clear pattern of epistasis: dsx > tra, tra-2 > ix. We conclude that these genes function in a single pathway that determines sex. The data suggest that these mutants are major regulatory loci that control the batteries of genes necessary for the development of many, and perhaps all, secondary sexual characteristics.-The striking similarities between the properties of these loci and those of the homeotic loci that determine segmental and subsegmental specialization during development suggest that the basic mechanisms of regulation are the same in the two situations. The phenotypes and interactions of these sex-determination mutants provide the basis for the model of how the wild-type alleles of these loci act together to effect normal sex determination. Implications of these observations for the function of other homeotic loci are discussed.

View Publication Page
Magee Lab
12/08/04 | On the initiation and propagation of dendritic spikes in CA1 pyramidal neurons.
Gasparini S, Migliore M, Magee JC
The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2004 Dec 8;24(49):11046-56. doi: 10.1002/cbic.201000254

Under certain conditions, regenerative voltage spikes can be initiated locally in the dendrites of CA1 pyramidal neurons. These are interesting events that could potentially provide neurons with additional computational abilities. Using whole-cell dendritic recordings from the distal apical trunk and proximal tuft regions and realistic computer modeling, we have determined that highly synchronized and moderately clustered inputs are required for dendritic spike initiation: approximately 50 synaptic inputs spread over 100 mum of the apical trunk/tuft need to be activated within 3 msec. Dendritic spikes are characterized by a more depolarized voltage threshold than at the soma [-48 +/- 1 mV (n = 30) vs -56 +/- 1 mV (n = 7), respectively] and are mainly generated and shaped by dendritic Na+ and K+ currents. The relative contribution of AMPA and NMDA currents is also important in determining the actual spatiotemporal requirements for dendritic spike initiation. Once initiated, dendritic spikes can easily reach the soma, but their propagation is only moderately strong, so that it can be modulated by physiologically relevant factors such as changes in the V(m) and the ionic composition of the extracellular solution. With effective spike propagation, an extremely short-latency neuronal output is produced for greatly reduced input levels. Therefore, dendritic spikes function as efficient detectors of specific input patterns, ensuring that the neuronal response to high levels of input synchrony is a precisely timed action potential output.

View Publication Page
07/01/09 | Onconase cytotoxicity relies on the distribution of its positive charge.
Turcotte RF, Lavis LD, Raines RT
The FEBS Journal. 2009 Jul;276(14):3846-57. doi: 10.1111/j.1742-4658.2009.07098.x

Onconase (ONC) is a member of the ribonuclease A superfamily that is toxic to cancer cells in vitro and in vivo. ONC is now in Phase IIIb clinical trials for the treatment of malignant mesothelioma. Internalization of ONC to the cytosol of cancer cells is essential for its cytotoxic activity, despite the apparent absence of a cell-surface receptor protein. Endocytosis and cytotoxicity do, however, appear to correlate with the net positive charge of ribonucleases. To dissect the contribution made by the endogenous arginine and lysine residues of ONC to its cytotoxicity, 22 variants were created in which cationic residues were replaced with alanine. Variants with the same net charge (+2 to +5) as well as equivalent catalytic activity and conformational stability were found to exhibit large (> 10-fold) differences in toxicity for the cells of a human leukemia line. In addition, a more cationic ONC variant could be either much more or much less cytotoxic than a less cationic variant, again depending on the distribution of its cationic residues. The endocytosis of variants with widely divergent cytotoxic activity was quantified by flow cytometry using a small-molecule fluorogenic label, and was found to vary by twofold or less. This small difference in endocytosis did not account for the large difference in cytotoxicity, implicating the distribution of cationic residues as being critical for lipid-bilayer translocation subsequent to endocytosis. This finding has fundamental implications for understanding the interaction of ribonucleases and other proteins with mammalian cells.

View Publication Page
05/26/22 | One engram two readouts: stimulus dynamics switch a learned behavior in Drosophila
Mehrab N Modi , Adithya Rajagopalan , Hervé Rouault , Yoshinori Aso , Glenn C Turner
bioRxiv. 2022 May 26:. doi: 10.1101/2022.05.24.492551

Memory guides the choices an animal makes across widely varying conditions in dynamic environments. Consequently, the most adaptive choice depends on the options available. How can a single memory support optimal behavior across different sets of choice options? We address this using olfactory learning in Drosophila. Even when we restrict an odor-punishment association to a single set of synapses using optogenetics, we find that flies still show choice behavior that depends on the options it encounters. Here we show that how the odor choices are presented to the animal influences memory recall itself. Presenting two similar odors in sequence enabled flies to not only discriminate them behaviorally but also at the level of neural activity. However, when the same odors were encountered as solitary stimuli, no such differences were detectable. These results show that memory recall is not simply a comparison to a static learned template, but can be adaptively modulated by stimulus dynamics.

View Publication Page