Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lippincottschwartz Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3947 Publications

Showing 2701-2710 of 3947 results
Egnor Lab
07/01/14 | Phase shifts in binaural stimuli provide directional cues for sound localisation in the field cricket Gryllus bimaculatus.
Seagraves KM, Hedwig B
Journal of Experimental Biology. 2014 Jul 1;217(Pt 13):2390-8. doi: 10.1242/jeb.101402

The cricket's auditory system is a highly directional pressure difference receiver whose function is hypothesised to depend on phase relationships between the sound waves propagating through the auditory trachea that connects the left and right hearing organs. We tested this hypothesis by measuring the effect of experimentally constructed phase shifts in acoustic stimuli on phonotactic behavior of Gryllus bimaculatus, the oscillatory response patterns of the tympanic membrane, and the activity of the auditory afferents. The same artificial calling song was played simultaneously at the left and right sides of the cricket, but one sound pattern was shifted in phase by 90 deg (carrier frequencies between 3.6 and 5.4 kHz). All three levels of auditory processing are sensitive to experimentally induced acoustic phase shifts, and the response characteristics are dependent on the carrier frequency of the sound stimulus. At lower frequencies, crickets steered away from the sound leading in phase, while tympanic membrane vibrations and auditory afferent responses were smaller when the ipsilateral sound was leading. In contrast, opposite responses were observed at higher frequencies in all three levels of auditory processing. Minimal responses occurred near the carrier frequency of the cricket's calling song, suggesting a stability at this frequency. Our results indicate that crickets may use directional cues arising from phase shifts in acoustic signals for sound localisation, and that the response properties of pressure difference receivers may be analysed with phase-shifted sound stimuli to further our understanding of how insect auditory systems are adapted for directional processing.

View Publication Page
08/22/07 | Phase-sensitive sum-frequency vibrational spectroscopy and its application to studies of interfacial alkyl chains.
Ji N, Ostroverkhov V, Chen C, Shen Y
Journal of the American Chemical Society. 2007 Aug 22;129(33):10056-7. doi: 10.1021/ja071989t

The first general phase-sensitive sum-frequency vibrational spectroscopy (SFVS) was described, which recovers the phase information lost in conventional SFVS measurements. Using a self-assembled monolayer, we demonstrated that this novel technique measures the absolute orientation of surface molecular moieties and is very powerful in resolving spectral features.

View Publication Page
Gonen Lab
01/01/13 | Phasing electron diffraction data by molecular replacement: strategy for structure determination and refinement.
Wisedchaisri G, Gonen T
Methods in Molecular Biology. 2013;955:243-72. doi: 10.1007/978-1-62703-176-9_14

Electron crystallography is arguably the only electron cryomicroscopy (cryo EM) technique able to deliver atomic resolution data (better then 3 Å) for membrane proteins embedded in a membrane. The progress in hardware improvements and sample preparation for diffraction analysis resulted in a number of recent examples where increasingly higher resolutions were achieved. Other chapters in this book detail the improvements in hardware and delve into the intricate art of sample preparation for microscopy and electron diffraction data collection and processing. In this chapter, we describe in detail the protocols for molecular replacement for electron diffraction studies. The use of a search model for phasing electron diffraction data essentially eliminates the need of acquiring image data rendering it immune to aberrations from drift and charging effects that effectively lower the attainable resolution.

View Publication Page
07/10/07 | Phenotype clustering of breast epithelial cells in confocal images based on nuclear protein distribution analysis.
Long F, Peng H, Sudar D, Lelièvre SA, Knowles DW
BMC Cell Biology. 2007 Jul 10;8 (Suppl 1):S3. doi: 10.1007/s12021-010-9090-x

The distribution of chromatin-associated proteins plays a key role in directing nuclear function. Previously, we developed an image-based method to quantify the nuclear distributions of proteins and showed that these distributions depended on the phenotype of human mammary epithelial cells. Here we describe a method that creates a hierarchical tree of the given cell phenotypes and calculates the statistical significance between them, based on the clustering analysis of nuclear protein distributions.

View Publication Page
07/22/10 | Phenotypic robustness conferred by apparently redundant transcriptional enhancers.
Frankel N, Davis GK, Vargas D, Wang S, Payre F, Stern DL
Nature. 2010 Jul 22;466(7305):490-3. doi: 10.1038/nature09158

Genes include cis-regulatory regions that contain transcriptional enhancers. Recent reports have shown that developmental genes often possess multiple discrete enhancer modules that drive transcription in similar spatio-temporal patterns: primary enhancers located near the basal promoter and secondary, or ’shadow’, enhancers located at more remote positions. It has been proposed that the seemingly redundant activity of primary and secondary enhancers contributes to phenotypic robustness. We tested this hypothesis by generating a deficiency that removes two newly discovered enhancers of shavenbaby (svb, a transcript of the ovo locus), a gene encoding a transcription factor that directs development of Drosophila larval trichomes. At optimal temperatures for embryonic development, this deficiency causes minor defects in trichome patterning. In embryos that develop at both low and high extreme temperatures, however, absence of these secondary enhancers leads to extensive loss of trichomes. These temperature-dependent defects can be rescued by a transgene carrying a secondary enhancer driving transcription of the svb cDNA. Finally, removal of one copy of wingless, a gene required for normal trichome patterning, causes a similar loss of trichomes only in flies lacking the secondary enhancers. These results support the hypothesis that secondary enhancers contribute to phenotypic robustness in the face of environmental and genetic variability.

View Publication Page
03/15/08 | Phenylglycine and phenylalanine derivatives as potent and selective HDAC1 inhibitors (SHI-1).
Wilson KJ, Witter DJ, Grimm JB, Siliphaivanh P, Otte KM, Kral AM, Fleming JC, Harsch A, Hamill JE, Cruz JC, Chenard M, Szewczak AA, Middleton RE, Hughes BL, Dahlberg WK, Secrist JP, Miller TA
Bioorganic & Medicinal Chemistry Letters. 2008 Mar 15;18(6):1859-63. doi: 10.1016/j.bmcl.2008.02.012

An HTS screening campaign identified a series of low molecular weight phenols that showed excellent selectivity (>100-fold) for HDAC1/HDAC2 over other Class I and Class II HDACs. Evolution and optimization of this HTS hit series provided HDAC1-selective (SHI-1) compounds with excellent anti-proliferative activity and improved physical properties. Dose-dependent efficacy in a mouse HCT116 xenograft model was demonstrated with a phenylglycine SHI-1 analog.

View Publication Page
Riddiford Lab
09/10/81 | Pheromone binding and inactivation by moth antennae.
Vogt RG, Riddiford LM
Nature. 1981 Sep 10-16;293(5828):161-3

The antennae of male silk moths are extremely sensitive to the female sex pheromone such that a male moth can find a female up to 4.5 km away. This remarkable sensitivity is due to both the morphological and biochemical design of these antennae. Along the branches of the plumose antennae are the sensilla trichodea, each consisting of a hollow cuticular hair containing two unbranched dendrites bathed in a fluid, the receptor lymph ,3. The dendrites and receptor lymph are isolated from the haemolymph by a barrier of epidermal cells which secreted the cuticular hair. Pheromone molecules are thought to diffuse down 100 A-wide pore tubules through the cuticular wall and across the receptor lymph space to receptors located in the dendritic membrane. To prevent the accumulation of residual stimulant and hence sensory adaptation, the pheromone molecules are subsequently inactivated in an apparent two-step process of rapid ’early inactivation’ followed by much slower enzymatic degradation. The biochemistry involved in this sequence of events is largely unknown. We report here the identification of three proteins which interact with the pheromone of the wild silk moth Antheraea polyphemus: a pheromone-binding protein and a pheromone-degrading esterase, both uniquely located in the pheromone-sensitive sensilla; and a second esterase common to all cuticular tissues except the sensilla.

View Publication Page
Eddy/Rivas Lab
12/07/11 | Phosphorylation at the interface.
Davis FP
Structure . 2011 Dec 7;19:1726-7. doi: 10.1016/j.str.2011.11.006

Proteomic studies have identified thousands of eukaryotic phosphorylation sites (phosphosites), but few are functionally characterized. Nishi et al., in this issue of Structure, characterize phosphosites at protein-protein interfaces and estimate the effect of their phosphorylation on interaction affinity, by combining proteomics data with protein structures.

View Publication Page
Magee Lab
06/15/02 | Phosphorylation-dependent differences in the activation properties of distal and proximal dendritic Na+ channels in rat CA1 hippocampal neurons.
Gasparini S, Magee JC
The Journal of Physiology. 2002 Jun 15;541(Pt 3):665-72. doi: 10.1002/cbic.201000254

{At distal dendritic locations, the threshold for action potential generation is higher and the amplitude of back-propagating spikes is decreased. To study whether these characteristics depend upon Na+ channels, their voltage-dependent properties at proximal and distal dendritic locations were compared in CA1 hippocampal neurons. Distal Na+ channels activated at more hyperpolarized voltages than proximal (half-activation voltages were -20.4 +/- 2.4 mV vs. -12.0 +/- 1.7 mV for distal and proximal patches, respectively

View Publication Page
03/26/18 | Photoactivatable drugs for nicotinic optopharmacology.
Banala S, Arvin MC, Bannon NM, Jin X, Macklin JJ, Wang Y, Peng C, Zhao G, Marshall JJ, Gee KR, Wokosin DL, Kim VJ, McIntosh JM, Contractor A, Lester HA, Kozorovitskiy Y, Drenan RM, Lavis LD
Nature Methods. 2018 Mar 26;15(5):347-50. doi: 10.1038/nmeth.4637

Photoactivatable pharmacological agents have revolutionized neuroscience, but the palette of available compounds is limited. We describe a general method for caging tertiary amines by using a stable quaternary ammonium linkage that elicits a red shift in the activation wavelength. We prepared a photoactivatable nicotine (PA-Nic), uncageable via one- or two-photon excitation, that is useful to study nicotinic acetylcholine receptors (nAChRs) in different experimental preparations and spatiotemporal scales.

View Publication Page