Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lippincottschwartz Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3947 Publications

Showing 2711-2720 of 3947 results
12/01/08 | Photoactivated localization microscopy (PALM) of adhesion complexes. (With commentary)
Shroff H, White H, Betzig E
Current Protocols in Cell Biology. 2008 Dec;Chapter 4(Unit 4):21. doi: 10.1002/0471143030.cb0421s41

Key to understanding a protein’s biological function is the accurate determination of its spatial distribution inside a cell. Although fluorescent protein markers allow the targeting of specific proteins with molecular precision, much of this information is lost when the resultant fusion proteins are imaged with conventional, diffraction-limited optics. In response, several imaging modalities that are capable of resolution below the diffraction limit (approximately 200 nm) have emerged. Here, both single- and dual-color superresolution imaging of biological structures using photoactivated localization microscopy (PALM) are described. The examples discussed focus on adhesion complexes: dense, protein-filled assemblies that form at the interface between cells and their substrata. A particular emphasis is placed on the instrumentation and photoactivatable fluorescent protein (PA-FP) tags necessary to achieve PALM images at approximately 20 nm resolution in 5 to 30 min in fixed cells.

Commentary: A paper spearheaded by Hari which gives a thorough description of the methods and hardware needed to successfully practice PALM, including cover slip preparation, cell transfection and fixation, drift correction with fiducials, characterization of on/off contrast ratios for different photoactivted fluorescent proteins, identifying PALM-suitable cells, and mechanical and optical components of a PALM system.

View Publication Page
01/01/15 | Photocontrollable fluorescent proteins for superresolution imaging.
Shcherbakova DM, Sengupta P, Lippincott-Schwartz J, Verkhusha VV
Annual review of biophysics. 2014;43:303-29. doi: 10.1146/annurev-biophys-051013-022836

Superresolution fluorescence microscopy permits the study of biological processes at scales small enough to visualize fine subcellular structures that are unresolvable by traditional diffraction-limited light microscopy. Many superresolution techniques, including those applicable to live cell imaging, utilize genetically encoded photocontrollable fluorescent proteins. The fluorescence of these proteins can be controlled by light of specific wavelengths. In this review, we discuss the biochemical and photophysical properties of photocontrollable fluorescent proteins that are relevant to their use in superresolution microscopy. We then describe the recently developed photoactivatable, photoswitchable, and reversibly photoswitchable fluorescent proteins, and we detail their particular usefulness in single-molecule localization-based and nonlinear ensemble-based superresolution techniques. Finally, we discuss recent applications of photocontrollable proteins in superresolution imaging, as well as how these applications help to clarify properties of intracellular structures and processes that are relevant to cell and developmental biology, neuroscience, cancer biology and biomedicine.

View Publication Page
11/08/14 | Photohighlighting approaches to access membrane dynamics of the Golgi apparatus.
Sengupta P, Lippincott-Schwartz J
Methods in cell biology. 2013;118:217-34. doi: 10.1016/B978-0-12-417164-0.00013-6

By providing quantitative, visual data of live cells, fluorescent protein-based microscopy techniques are furnishing novel insights into the complexities of membrane trafficking pathways and organelle dynamics. In this chapter, we describe experimental protocols employing fluorescent protein-based photohighlighting techniques to quantify protein movement into and out of the Golgi apparatus, an organelle that serves as the central sorting and processing station of the secretory pathway. The methods allow kinetic characteristics of Golgi-associated protein trafficking to be deciphered, which can help clarify how the Golgi maintains itself as a steady-state structure despite a continuous flux of secretory cargo passing into and out of this organelle. The guidelines presented in this chapter can also be applied to examine the dynamics of other intracellular organelle systems, elucidating mechanisms for how proteins are maintained in specific organelles and/or circulated to other destinations within the cell.

View Publication Page
Fitzgerald Lab
01/08/13 | Photon shot noise limits on optical detection of neuronal spikes and estimation of spike timing.
Wilt BA, Fitzgerald JE, Schnitzer MJ
Biophysical journal. 2013 Jan 08;104(1):51-62. doi: 10.1016/j.bpj.2012.07.058

Optical approaches for tracking neural dynamics are of widespread interest, but a theoretical framework quantifying the physical limits of these techniques has been lacking. We formulate such a framework by using signal detection and estimation theory to obtain physical bounds on the detection of neural spikes and the estimation of their occurrence times as set by photon counting statistics (shot noise). These bounds are succinctly expressed via a discriminability index that depends on the kinetics of the optical indicator and the relative fluxes of signal and background photons. This approach facilitates quantitative evaluations of different indicators, detector technologies, and data analyses. Our treatment also provides optimal filtering techniques for optical detection of spikes. We compare various types of Ca(2+) indicators and show that background photons are a chief impediment to voltage sensing. Thus, voltage indicators that change color in response to membrane depolarization may offer a key advantage over those that change intensity. We also examine fluorescence resonance energy transfer indicators and identify the regimes in which the widely used ratiometric analysis of signals is substantially suboptimal. Overall, by showing how different optical factors interact to affect signal quality, our treatment offers a valuable guide to experimental design and provides measures of confidence to assess optically extracted traces of neural activity.

View Publication Page
Singer Lab
10/23/14 | Photoswitchable red fluorescent protein with a large stokes shift.
Piatkevich KD, English BP, Malashkevich VN, Xiao H, Almo SC, Singer RH, Verkhusha VV
Chemistry & Biology. 2014 Oct 23;21(10):1402-14. doi: 10.1016/j.chembiol.2014.08.010

A subclass of fluorescent proteins (FPs), large Stokes shift (LSS) FP, are characterized by increased spread between excitation and emission maxima. We report a photoswitchable variant of a red FP with an LSS, PSLSSmKate, which initially exhibits excitation and emission at 445 and 622 nm, but violet irradiation photoswitches PSLSSmKate into a common red form with excitation and emission at 573 and 621 nm. We characterize spectral, photophysical, and biochemical properties of PSLSSmKate in vitro and in mammalian cells and determine its crystal structure in the LSS form. Mass spectrometry, mutagenesis, and spectroscopy of PSLSSmKate allow us to propose molecular mechanisms for the LSS, pH dependence, and light-induced chromophore transformation. We demonstrate the applicability of PSLSSmKate to superresolution photoactivated localization microscopy and protein dynamics in live cells. Given its promising properties, we expect that PSLSSmKate-like phenotype will be further used for photoactivatable imaging and tracking multiple populations of intracellular objects.

View Publication Page
04/22/95 | Phylogenetic evidence that aphids, rather than plants, determine gall morphology
David L Stern
Proceedings of the Royal Society of London. Series B: Biological Sciences;260(1357):85-89. doi: 10.1098/rspb.1995.0063

Many diverse taxa have evolved independently the habit of living in plant galls. For all but some viral galls, it is unknown whether plants produce galls as a specialized plant reaction to certain types of herbivory, or whether herbivores direct gall development. Here I present a phylogenetic analysis of gallforming cerataphidine aphids which demonstrates that gall morphology is extremely conservative with respect to aphid phylogeny, but variable with respect to plant taxonomy. In addition, the phylogeny reveals at least three host plant switches where the aphids produce galls most similar to the galls of their closest relatives, rather than galls similar to the galls of aphids already present on the host plant. These results suggest that aphids determine the details of gall morphology essentially extending their phenotype to include plant material. Based on this and other evidence, I suggest that the aphids and other galling insects manipulate latent plant developmental programmes to produce modified atavistic plant morphologies rather than create new forms de novo.

View Publication Page
02/01/98 | Phylogeny of the Tribe Cerataphidini (Homoptera) and the Evolution of the Horned Soldier Aphids
David L Stern
Evolution. 02/1998;52:155-165

The horned soldier aphids of the Cerataphidini, unlike most social insects that reside in nests, live on the open surface of plants. The lack of a nest and other obvious ecological correlates makes it unclear why secondary-host soldiers might have evolved. Here I present a molecular phylogenetic analysis of 32 species of the Cerataphidini, including 10 species from the genera Ceratovacuna and Pseudoregma that produce horned soldiers. The phylogeny suggests that horned soldiers evolved once and were lost once or twice. Most horned soldiers are a morphologically specialized caste and two species that have unspecialized soldiers are independently derived from species with specialized castes. The genus Ceratovacuna appears to have undergone a relatively rapid radiation. Mapping secondary-host plants and geographic ranges onto the phylogeny suggests that bamboos were the ancestral secondary-host plants and that the Asian tropics and subtropics were the ancestral geographic regions for the genera Astegopteryx, Ceratoglyphina, Ceratovacuna Chaitoregma, and Pseudoregma and possibly for the entire tribe. There is evidence for vicariant events that separate the tropical and subtropical lineages in all of the major lineages of the tribe and for dispersal of some lineages. Based on these results, I present hypotheses for the causes and consequences of horned-soldier evolution.

View Publication Page
Grigorieff Lab
02/16/18 | Physical basis of amyloid fibril polymorphism.
Close W, Neumann M, Schmidt A, Hora M, Annamalai K, Schmidt M, Reif B, Schmidt V, Grigorieff N, Fändrich M
Nature Communications. 2018 Feb 16;9(1):699. doi: 10.1038/s41467-018-03164-5

Polymorphism is a key feature of amyloid fibril structures but it remains challenging to explain these variations for a particular sample. Here, we report electron cryomicroscopy-based reconstructions from different fibril morphologies formed by a peptide fragment from an amyloidogenic immunoglobulin light chain. The observed fibril morphologies vary in the number and cross-sectional arrangement of a structurally conserved building block. A comparison with the theoretically possible constellations reveals the experimentally observed spectrum of fibril morphologies to be governed by opposing sets of forces that primarily arise from the β-sheet twist, as well as peptide-peptide interactions within the fibril cross-section. Our results provide a framework for rationalizing and predicting the structure and polymorphism of cross-β fibrils, and suggest that a small number of physical parameters control the observed fibril architectures.

View Publication Page
01/06/19 | Physical Principles of Membrane Shape Regulation by the Glycocalyx
Shurer CR, Kuo JC, Roberts LM, Gandhi JG, Colville MJ, Enoki TA, Pan H, Su J, Noble JM, Hollander MJ, O’Donnell JP, Yin R, Pedram K, Möckl L, Kourkoutis LF, Moerner W, Bertozzi CR, Feigenson GW, Reesink HL, Paszek MJ
Cell. Jan-06-2019;177(7):1757 - 1770.e21. doi: 10.1016/j.cell.2019.04.017

Cells bend their plasma membranes into highly curved forms to interact with the local environment, but how shape generation is regulated is not fully resolved. Here, we report a synergy between shape-generating processes in the cell interior and the external organization and composition of the cell-surface glycocalyxMucin biopolymers and long-chain polysaccharides within the glycocalyx can generate entropic forces that favor or disfavor the projection of spherical and finger-like extensions from the cell surface. A polymer brush model of the glycocalyx successfully predicts the effects of polymer size and cell-surface density on membrane morphologies. Specific glycocalyx compositions can also induce plasma membrane instabilities to generate more exotic undulating and pearled membrane structures and drive secretion of extracellular vesicles. Together, our results suggest a fundamental role for the glycocalyx in regulating curved membrane features that serve in communication between cells and with the extracellular matrix.

View Publication Page
11/01/06 | Physiological properties of zebra finch ventral tegmental area and substantia nigra pars compacta neurons.
Gale SD, Perkel DJ
Journal of Neurophysiology. 2006 Nov;96(5):2295-306. doi: 10.1152/jn.01040.2005

The neurotransmitter dopamine plays important roles in motor control, learning, and motivation in mammals and probably other animals as well. The strong dopaminergic projection to striatal regions and more moderate dopaminergic projections to other regions of the telencephalon predominantly arise from midbrain dopaminergic neurons in the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA). Homologous dopaminergic cell groups in songbirds project anatomically in a manner that may allow dopamine to influence song learning or song production. The electrophysiological properties of SNc and VTA neurons have not previously been studied in birds. Here we used whole cell recordings in brain slices in combination with tyrosine-hydroxylase immunolabeling as a marker of dopaminergic neurons to determine electrophysiological and pharmacological properties of dopaminergic and nondopaminergic neurons in the zebra finch SNc and VTA. Our results show that zebra finch dopaminergic neurons possess physiological properties very similar to those of mammalian dopaminergic neurons, including broad action potentials, calcium- and apamin-sensitive membrane-potential oscillations underlying pacemaker firing, powerful spike-frequency adaptation, and autoinhibition via D2 dopamine receptors. Moreover, the zebra finch SNc and VTA also contain nondopaminergic neurons with similarities (fast-firing, inhibition by the mu-opioid receptor agonist [d-Ala(2), N-Me-Phe(4), Gly-ol(5)]-enkephalin (DAMGO)) and differences (strong h-current that contributes to spontaneous firing) compared with GABAergic neurons in the mammalian SNc and VTA. Our results provide insight into the intrinsic membrane properties that regulate the activity of dopaminergic neurons in songbirds and add to strong evidence for anatomical, physiological, and functional similarities between the dopaminergic systems of mammals and birds.

View Publication Page