Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lippincottschwartz Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3947 Publications

Showing 2721-2730 of 3947 results
07/15/23 | Pinpoint: trajectory planning for multi-probe electrophysiology and injections in an interactive web-based 3D environment
Daniel Birman , Kenneth J. Yang , Steven J. West , Bill Karsh , Yoni Browning , the International Brain Laboratory , Joshua H. Siegle , Nicholas A. Steinmetz
bioRxiv. 2023 Jul 15:. doi: 10.1101/2023.07.14.548952

Targeting deep brain structures during electrophysiology and injections requires intensive training and expertise. Even with experience, researchers often can't be certain that a probe is placed precisely in a target location and this complexity scales with the number of simultaneous probes used in an experiment. Here, we present Pinpoint, open-source software that allows for interactive exploration of stereotaxic insertion plans. Once an insertion plan is created, Pinpoint allows users to save these online and share them with collaborators. 3D modeling tools allow users to explore their insertions alongside rig and implant hardware and ensure plans are physically possible. Probes in Pinpoint can be linked to electronic micro-manipulators allowing real-time visualization of current brain region targets alongside neural data. In addition, Pinpoint can control manipulators to automate and parallelize the insertion process. Compared to previously available software, Pinpoint's easy access through web browsers, extensive features, and real-time experiment integration enable more efficient and reproducible recordings.

View Publication Page
01/29/09 | Plasticity of burst firing induced by synergistic activation of metabotropic glutamate and acetylcholine receptors.
Moore SJ, Cooper DC, Spruston N
Neuron. 2009 Jan 29;61(2):287-300. doi: 10.1016/j.neuron.2008.12.013

Subiculum, the primary efferent pathway of hippocampus, participates in memory for spatial tasks, relapse to drug abuse, and temporal lobe seizures. Subicular pyramidal neurons exhibit low-threshold burst firing driven by a spike afterdepolarization. Here we report that burst firing can be regulated by stimulation of afferent projections to subiculum. Unlike synaptic plasticity, burst plasticity did not require synaptic depolarization, activation of AMPA or NMDA receptors, or action potential firing. Rather, enhancement of burst firing required synergistic activation of group I, subtype 1 metabotropic glutamate receptors (mGluRs) and muscarinic acetylcholine receptors (mAChR). When either of these receptors was blocked, a suppression of bursting was revealed, which in turn was blocked by antagonists of group I, subtype 5 mGluRs. These results indicate that the output of subiculum can be strongly and bidirectionally regulated by activation of glutamatergic inputs within the hippocampus and cholinergic afferents from the medial septum.

View Publication Page
Magee Lab
06/01/05 | Plasticity of dendritic function.
Magee JC, Johnston D
Current Opinion in Neurobiology. 2005 Jun;15:334-42. doi: 10.1002/cbic.201000254

The various properties of neuronal dendrites–their morphology, active membrane and synaptic properties–all play important roles in determining the functional capabilities of central nervous system neurons. Because of their fundamental involvement in both synaptic integration and synaptic plasticity, the active dendritic properties are important for both neuronal information processing and storage. The active properties of dendrites are determined by the densities of voltage-gated ion channels located within the dendrites in addition to the biophysical characteristics of those channels. The real power of this system resides in the level of plasticity that is provided by the many forms of channel modulation known to exist in neurons. Indeed, voltage gated ion channel modulation shapes the active properties of neuronal dendrites to specific conditions, thus tailoring the functional role of the single neuron within its circuit.

View Publication Page
10/30/12 | Plasticity of the asialoglycoprotein receptor deciphered by ensemble FRET imaging and single-molecule counting PALM imaging.
Renz M, Daniels BR, Vámosi G, Arias IM, Lippincott-Schwartz J
Proceedings of the National Academy of Sciences of the United States of America. 2012 Oct 30;109(44):E2989-97. doi: 10.1073/pnas.1211753109

The stoichiometry and composition of membrane protein receptors are critical to their function. However, the inability to assess receptor subunit stoichiometry in situ has hampered efforts to relate receptor structures to functional states. Here, we address this problem for the asialoglycoprotein receptor using ensemble FRET imaging, analytical modeling, and single-molecule counting with photoactivated localization microscopy (PALM). We show that the two subunits of asialoglycoprotein receptor [rat hepatic lectin 1 (RHL1) and RHL2] can assemble into both homo- and hetero-oligomeric complexes, displaying three forms with distinct ligand specificities that coexist on the plasma membrane: higher-order homo-oligomers of RHL1, higher-order hetero-oligomers of RHL1 and RHL2 with two-to-one stoichiometry, and the homo-dimer RHL2 with little tendency to further homo-oligomerize. Levels of these complexes can be modulated in the plasma membrane by exogenous ligands. Thus, even a simple two-subunit receptor can exhibit remarkable plasticity in structure, and consequently function, underscoring the importance of deciphering oligomerization in single cells at the single-molecule level.

View Publication Page
10/30/12 | Plasticity of the asialoglycoprotein receptor deciphered by ensemble FRET imaging and single-molecule counting PALM imaging.
Renz M, Daniels BR, Vámosi G, Arias IM, Lippincott-Schwartz J
Proceedings of the National Academy of Sciences of the United States of America. 2012 Oct 30;109(44):E2989-97. doi: 10.1073/pnas.1211753109

The stoichiometry and composition of membrane protein receptors are critical to their function. However, the inability to assess receptor subunit stoichiometry in situ has hampered efforts to relate receptor structures to functional states. Here, we address this problem for the asialoglycoprotein receptor using ensemble FRET imaging, analytical modeling, and single-molecule counting with photoactivated localization microscopy (PALM). We show that the two subunits of asialoglycoprotein receptor [rat hepatic lectin 1 (RHL1) and RHL2] can assemble into both homo- and hetero-oligomeric complexes, displaying three forms with distinct ligand specificities that coexist on the plasma membrane: higher-order homo-oligomers of RHL1, higher-order hetero-oligomers of RHL1 and RHL2 with two-to-one stoichiometry, and the homo-dimer RHL2 with little tendency to further homo-oligomerize. Levels of these complexes can be modulated in the plasma membrane by exogenous ligands. Thus, even a simple two-subunit receptor can exhibit remarkable plasticity in structure, and consequently function, underscoring the importance of deciphering oligomerization in single cells at the single-molecule level.

View Publication Page
10/08/15 | Plasticity-driven individualization of olfactory coding in mushroom body output neurons.
Hige T, Aso Y, Rubin GM, Turner GC
Nature. 2015 Oct 8;526(7572):258-62. doi: 10.1038/nature15396

Although all sensory circuits ascend to higher brain areas where stimuli are represented in sparse, stimulus-specific activity patterns, relatively little is known about sensory coding on the descending side of neural circuits, as a network converges. In insects, mushroom bodies have been an important model system for studying sparse coding in the olfactory system, where this format is important for accurate memory formation. In Drosophila, it has recently been shown that the 2,000 Kenyon cells of the mushroom body converge onto a population of only 34 mushroom body output neurons (MBONs), which fall into 21 anatomically distinct cell types. Here we provide the first, to our knowledge, comprehensive view of olfactory representations at the fourth layer of the circuit, where we find a clear transition in the principles of sensory coding. We show that MBON tuning curves are highly correlated with one another. This is in sharp contrast to the process of progressive decorrelation of tuning in the earlier layers of the circuit. Instead, at the population level, odour representations are reformatted so that positive and negative correlations arise between representations of different odours. At the single-cell level, we show that uniquely identifiable MBONs display profoundly different tuning across different animals, but that tuning of the same neuron across the two hemispheres of an individual fly was nearly identical. Thus, individualized coordination of tuning arises at this level of the olfactory circuit. Furthermore, we find that this individualization is an active process that requires a learning-related gene, rutabaga. Ultimately, neural circuits have to flexibly map highly stimulus-specific information in sparse layers onto a limited number of different motor outputs. The reformatting of sensory representations we observe here may mark the beginning of this sensory-motor transition in the olfactory system.

View Publication Page
05/29/22 | Plasticity-induced actin polymerization in the dendritic shaft regulates intracellular AMPA receptor trafficking.
V. C. Wong , P.R. Houlihan , H. Liu , D. Walpita , M.C. DeSantis , Z. Liu , E. K. O’Shea
bioRxiv. 2022 May 29:. doi: 10.1101/2022.05.29.493906

AMPA-type receptors (AMPARs) are rapidly inserted into synapses undergoing long-term potentiation (LTP) to increase synaptic transmission, but how AMPAR-containing vesicles are selectively trafficked to these synapses during LTP is not known. Here we developed a strategy to label AMPAR GluA1 subunits expressed from the endogenous loci of rat hippocampal neurons such that the motion of GluA1-containing vesicles in time-lapse sequences can be characterized using single-particle tracking and mathematical modeling. We find that GluA1-containing vesicles are confined and concentrated near sites of stimulation-induced plasticity. We show that confinement is mediated by actin polymerization, which hinders the active transport of GluA1-containing vesicles along the length of the dendritic shaft by modulating the rheological properties of the cytoplasm. Actin polymerization also facilitates myosin-mediated transport of GluA1-containing vesicles to exocytic sites. We conclude that neurons utilize F-actin to increase vesicular GluA1 reservoirs and promote exocytosis proximal to the sites of neuronal activity.

View Publication Page
08/15/24 | Plasticity-induced actin polymerization in the dendritic shaft regulates intracellular AMPA receptor trafficking.
Wong VC, Houlihan PR, Liu H, Walpita D, DeSantis MC, Liu Z, O'Shea EK
Elife. 2024 Aug 15;13:. doi: 10.7554/eLife.80622

AMPA-type receptors (AMPARs) are rapidly inserted into synapses undergoing plasticity to increase synaptic transmission, but it is not fully understood if and how AMPAR-containing vesicles are selectively trafficked to these synapses. Here, we developed a strategy to label AMPAR GluA1 subunits expressed from their endogenous loci in cultured rat hippocampal neurons and characterized the motion of GluA1-containing vesicles using single-particle tracking and mathematical modeling. We find that GluA1-containing vesicles are confined and concentrated near sites of stimulation-induced structural plasticity. We show that confinement is mediated by actin polymerization, which hinders the active transport of GluA1-containing vesicles along the length of the dendritic shaft by modulating the rheological properties of the cytoplasm. Actin polymerization also facilitates myosin-mediated transport of GluA1-containing vesicles to exocytic sites. We conclude that neurons utilize F-actin to increase vesicular GluA1 reservoirs and promote exocytosis proximal to the sites of synaptic activity.

View Publication Page
05/01/19 | Pleiotropic effects of ebony and tan on pigmentation and cuticular hydrocarbon composition in Drosophila melanogaster.
Massey JH, Akiyama N, Bien T, Dreisewerd K, Wittkopp PJ, Yew JY, Takahashi A
Frontiers in Physiology. 05/2019;10:518. doi: 10.3389/fphys.2019.00518

Pleiotropic genes are genes that affect more than one trait. For example, many genes required for pigmentation in the fruit fly also affect traits such as circadian rhythms, vision, and mating behavior. Here, we present evidence that two pigmentation genes, and , which encode enzymes catalyzing reciprocal reactions in the melanin biosynthesis pathway, also affect cuticular hydrocarbon (CHC) composition in females. More specifically, we report that loss-of-function mutants have a CHC profile that is biased toward long (>25C) chain CHCs, whereas loss-of-function mutants have a CHC profile that is biased toward short (<25C) chain CHCs. Moreover, pharmacological inhibition of dopamine synthesis, a key step in the melanin synthesis pathway, reversed the changes in CHC composition seen in mutants, making the CHC profiles similar to those seen in mutants. These observations suggest that genetic variation affecting and/or activity might cause correlated changes in pigmentation and CHC composition in natural populations. We tested this possibility using the Genetic Reference Panel (DGRP) and found that CHC composition covaried with pigmentation as well as levels of and expression in newly eclosed adults in a manner consistent with the and mutant phenotypes. These data suggest that the pleiotropic effects of and might contribute to covariation of pigmentation and CHC profiles in .

View Publication Page
12/01/05 | Pleiotropic functions of a conserved insect-specific Hox peptide motif.
Hittinger CT, Stern DL, Carroll SB
Development. 2005 Dec;132(23):5261-70. doi: 10.1242/dev.02146

The proteins that regulate developmental processes in animals have generally been well conserved during evolution. A few cases are known where protein activities have functionally evolved. These rare examples raise the issue of how highly conserved regulatory proteins with many roles evolve new functions while maintaining old functions. We have investigated this by analyzing the function of the ;QA' peptide motif of the Hox protein Ultrabithorax (Ubx), a motif that has been conserved throughout insect evolution since its establishment early in the lineage. We precisely deleted the QA motif at the endogenous locus via allelic replacement in Drosophila melanogaster. Although the QA motif was originally characterized as involved in the repression of limb formation, we have found that it is highly pleiotropic. Curiously, deleting the QA motif had strong effects in some tissues while barely affecting others, suggesting that QA function is preferentially required for a subset of Ubx target genes. QA deletion homozygotes had a normal complement of limbs, but, at reduced doses of Ubx and the abdominal-A (abd-A) Hox gene, ectopic limb primordia and adult abdominal limbs formed when the QA motif was absent. These results show that redundancy and the additive contributions of activity-regulating peptide motifs play important roles in moderating the phenotypic consequences of Hox protein evolution, and that pleiotropic peptide motifs that contribute quantitatively to several functions are subject to intense purifying selection.

View Publication Page