Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lippincottschwartz Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

4164 Publications

Showing 281-290 of 4164 results
07/31/25 | A sensitive orange fluorescent calcium ion indicator for imaging neural activity
Aggarwal A, Baker HA, Dürst CD, Chen I, de Chambrier P, Gonzales JM, Marvin JS, Vandal M, Lundberg T, Sakoi K, Patel R, Wang C, Visser F, Fouad Y, Sunil S, Wiens M, Terai T, Takahashi-Yamashiro K, Thompson RJ, Brown TA, Nasu Y, Nguyen MD, Gordon GR, McFarlane S, Podgorski K, Holtmaat A, Campbell RE, Lohman AW
bioRxiv. 2025 Jul 31:. doi: 10.1101/2025.07.28.667269

Genetically encoded calcium indicators (GECIs) are vital tools for fluorescence-based visualization of neuronal activity with high spatial and temporal resolution. However, current highest-performance GECIs are predominantly green or red fluorescent, limiting multiplexing options and efficient excitation with fixed-wavelength femtosecond lasers operating at 1030 nm. Here, we introduce OCaMP (also known as O-GECO2), an orange fluorescent GECI engineered from O-GECO1 through targeted substitutions to improve calcium affinity while retaining the favorable photophysical properties of mOrange2. OCaMP exhibits improved two-photon cross-section, responsiveness, photostability, and calcium affinity relative to O-GECO1. In cultured neurons, zebrafish, and mouse cortex, OCaMP outperforms the red GECIs jRCaMP1a and jRGECO1a in sensitivity, kinetics, and signal-to-noise ratio. These properties establish OCaMP as a robust tool for high-fidelity neural imaging optimized for 1030 nm excitation and a compromise-free option within the spectral gap between existing green and red GECIs.

View Publication Page
Looger Lab
11/05/18 | A sequence-based approach for identifying protein fold switchers.
Soumya Mishra , Loren L. Looger , Lauren L. Porter
bioRxiv. 2018 Nov 05:. doi: 10.1101/462606

Although most proteins conform to the classical one-structure/one-function paradigm, an increasing number of proteins with dual structures and functions are emerging. These fold-switching proteins remodel their secondary structures in response to cellular stimuli, fostering multi-functionality and tight cellular control. Accurate predictions of fold-switching proteins could both suggest underlying mechanisms for uncharacterized biological processes and reveal potential drug targets. Previously, we developed a prediction method for fold-switching proteins based on secondary structure predictions and structure-based thermodynamic calculations. Given the large number of genomic sequences without homologous experimentally characterized structures, however, we sought to predict fold-switching proteins from their sequences alone. To do this, we leveraged state-of-the-art secondary structure predictions, which require only amino acid sequences but are not currently designed to identify structural duality in proteins. Thus, we hypothesized that incorrect and inconsistent secondary structure predictions could be good initial predictors of fold-switching proteins. We found that secondary structure predictions of fold-switching proteins with solved structures are indeed less accurate than secondary structure predictions of non-fold-switching proteins with solved structures. These inaccuracies result largely from the conformations of fold-switching proteins that are underrepresented in the Protein Data Bank (PDB), and, consequently, the training sets of secondary structure predictors. Given that secondary structure predictions are homology-based, we hypothesized that decontextualizing the inaccurately-predicted regions of fold-switching proteins could weaken the homology relationships between these regions and their overpopulated structural representatives. Thus, we reran secondary structure predictions on these regions in isolation and found that they were significantly more inconsistent than in regions of non-fold-switching proteins. Thus, inconsistent secondary structure predictions can serve as a preliminary marker of fold switching. These findings have implications for genomics and the future development of secondary structure predictors.

View Publication Page
Looger Lab
10/01/21 | A sequence-based method for predicting extant fold switchers that undergo α-helix <-> β-strand transitions
Soumya Mishra , Loren L. Looger , Lauren L. Porter
Biopolymers. 2021 Oct 01;112(10):. doi: 10.1101/2021.01.14.426714

Extant fold-switching proteins remodel their secondary structures and change their functions in response to cellular stimuli, regulating biological processes and affecting human health. In spite of their biological importance, these proteins remain understudied. Few representative examples of fold switchers are available in the Protein Data Bank, and they are difficult to predict. In fact, all 96 experimentally validated examples of extant fold switchers were stumbled upon by chance. Thus, predictive methods are needed to expedite the process of discovering and characterizing more of these shapeshifting proteins. Previous approaches require a solved structure or all-atom simulations, greatly constraining their use. Here, we propose a high-throughput sequence-based method for predicting extant fold switchers that transition from α-helix in one conformation to β-strand in the other. This method leverages two previous observations: (1) α-helix <-> β-strand prediction discrepancies from JPred4 are a robust predictor of fold switching, and (2) the fold-switching regions (FSRs) of some extant fold switchers have different secondary structure propensities when expressed in isolation (isolated FSRs) than when expressed within the context of their parent protein (contextualized FSRs). Combining these two observations, we ran JPred4 on the sequences of isolated and contextualized FSRs from 14 known extant fold switchers and found α-helix <->β-strand prediction discrepancies in every case. To test the overall robustness of this finding, we randomly selected regions of proteins not expected to switch folds (single-fold proteins) and found significantly fewer α-helix <-> β-strand prediction discrepancies (p < 4.2*10−20, Kolmogorov-Smirnov test). Combining these discrepancies with the overall percentage of predicted secondary structure, we developed a classifier that often robustly identifies extant fold switchers (Matthews Correlation Coefficient of 0.70). Although this classifier had a high false negative rate (6/14), its false positive rate was very low (1/211), suggesting that it can be used to predict a subset of extant fold switchers from billions of available genomic sequences.

View Publication Page
02/24/24 | A series of spontaneously blinking dyes for super-resolution microscopy
Katie L. Holland , Sarah E. Plutkis , Timothy A. Daugird , Abhishek Sau , Jonathan B. Grimm , Brian P. English , Qinsi Zheng , Sandeep Dave , Fariha Rahman , Liangqi Xie , Peng Dong , Ariana N. Tkachuk , Timothy A. Brown , Robert H. Singer , Zhe Liu , Catherine G. Galbraith , Siegfried M. Musser , Wesley R. Legant , Luke D. Lavis
bioRxiv. 2024 Feb 24:. doi: 10.1101/2024.02.23.581625

Spontaneously blinking fluorophores permit the detection and localization of individual molecules without reducing buffers or caging groups, thus simplifying single-molecule localization microscopy (SMLM). The intrinsic blinking properties of such dyes are dictated by molecular structure and modulated by environment, which can limit utility. We report a series of tuned spontaneously blinking dyes with duty cycles that span two orders of magnitude, allowing facile SMLM in cells and dense biomolecular structures.

View Publication Page
09/01/22 | A serotonergic axon-cilium synapse drives nuclear signaling to maintain chromatin accessibility
Shu-Hsien Sheu , Srigokul Upadhyayula , Vincent Dupuy , Song Pang , Andrew L. Lemire , Deepika Walpita , H. Amalia Pasolli , Fei Deng , Jinxia Wan , Lihua Wang , Justin Houser , Silvia Sanchez-Martinez , Sebastian E. Brauchi , Sambashiva Banala , Melanie Freeman , C. Shan Xu , Tom Kirchhausen , Harald F. Hess , Luke Lavis , Yu-Long Li , Séverine Chaumont-Dubel , David E. Clapham
Cell. 2022 Sep 01;185(18):3390-3407. doi: 10.1016/j.cell.2022.07.026

Chemical synapses between axons and dendrites mediate much of the brain’s intercellular communication. Here we describe a new kind of synapse – the axo-ciliary synapse - between axons and primary cilia. By employing enhanced focused ion beam – scanning electron microscopy on samples with optimally preserved ultrastructure, we discovered synapses between the serotonergic axons arising from the brainstem, and the primary cilia of hippocampal CA1 pyramidal neurons. Functionally, these cilia are enriched in a ciliary-restricted serotonin receptor, 5-hydroxytryptamine receptor 6 (HTR6), whose mutation is associated with learning and memory defects. Using a newly developed cilia-targeted serotonin sensor, we show that optogenetic stimulation of serotonergic axons results in serotonin release onto cilia. Ciliary HTR6 stimulation activates a non-canonical Gαq/11-RhoA pathway. Ablation of this pathway results in nuclear actin and chromatin accessibility changes in CA1 pyramidal neurons. Axo-ciliary synapses serve as a distinct mechanism for neuromodulators to program neuron transcription through privileged access to the nuclear compartment.

View Publication Page
06/20/12 | A simple strategy for detecting moving objects during locomotion revealed by animal-robot interactions.
Zabala F, Polidoro P, Robie AA, Branson K, Perona P, Dickinson MH
Current Biology. 2012 Jun 20;22(14):1344-50. doi: 10.1016/j.cub.2012.05.024

An important role of visual systems is to detect nearby predators, prey, and potential mates [1], which may be distinguished in part by their motion. When an animal is at rest, an object moving in any direction may easily be detected by motion-sensitive visual circuits [2, 3]. During locomotion, however, this strategy is compromised because the observer must detect a moving object within the pattern of optic flow created by its own motion through the stationary background. However, objects that move creating back-to-front (regressive) motion may be unambiguously distinguished from stationary objects because forward locomotion creates only front-to-back (progressive) optic flow. Thus, moving animals should exhibit an enhanced sensitivity to regressively moving objects. We explicitly tested this hypothesis by constructing a simple fly-sized robot that was programmed to interact with a real fly. Our measurements indicate that whereas walking female flies freeze in response to a regressively moving object, they ignore a progressively moving one. Regressive motion salience also explains observations of behaviors exhibited by pairs of walking flies. Because the assumptions underlying the regressive motion salience hypothesis are general, we suspect that the behavior we have observed in Drosophila may be widespread among eyed, motile organisms.

View Publication Page
07/01/25 | A simplified minimodel of visual cortical neurons
Du F, Núñez-Ochoa MA, Pachitariu M, Stringer C
Nat Commun. 2025 Jul 01:. doi: 10.1038/s41467-025-61171-9

Artificial neural networks (ANNs) have been shown to predict neural responses in primary visual cortex (V1) better than classical models. However, this performance often comes at the expense of simplicity and interpretability. Here we introduce a new class of simplified ANN models that can predict over 70% of the response variance of V1 neurons. To achieve this high performance, we first recorded a new dataset of over 29,000 neurons responding to up to 65,000 natural image presentations in mouse V1. We found that ANN models required only two convolutional layers for good performance, with a relatively small first layer. We further found that we could make the second layer small without loss of performance, by fitting individual "minimodels" to each neuron. Similar simplifications applied for models of monkey V1 neurons. We show that the minimodels can be used to gain insight into how stimulus invariance arises in biological neurons.

Preprint: https://www.biorxiv.org/content/early/2024/07/02/2024.06.30.601394

View Publication Page
09/26/25 | A single residue in the yellow fever virus envelope protein modulates virion architecture and antigenicity.
Bibby S, Jung J, Low YS, Amarilla AA, Newton ND, Scott CA, Balk J, Ting YT, Freney ME, Liang B, Grant T, Coulibaly F, Young P, Hall RA, Hobson-Peters J, Modhiran N, Watterson D
Nat Commun. 2025 Sep 26;16(1):8449. doi: 10.1038/s41467-025-63038-5

Yellow fever virus (YFV) is a re-emerging flavivirus that causes severe hepatic disease and mortality in humans. Despite being researched for over a century, the structure of YFV has remained elusive. Here we use a chimeric virus platform to resolve the first high resolution cryo-EM structures of YFV. Stark differences in particle morphology and homogeneity are observed between vaccine and virulent strains of YFV, and these are found to have significant implications on antibody recognition and neutralisation. We identify a single residue (R380) in the YFV envelope protein that stabilises the virion surface, and leads to reduced exposure of the cross-reactive fusion loop epitope. The differences in virion morphology between YFV strains also contribute to the reduced sensitivity of the virulent YFV virions to vaccine-induced antibodies. These findings have significant implications for YFV biology, vaccinology and structure-based flavivirus antigen design.

View Publication Page
08/24/22 | A single-cell transcriptomic atlas of complete insect nervous systems across multiple life stages.
Corrales M, Cocanougher BT, Kohn AB, Wittenbach JD, Long XS, Lemire A, Cardona A, Singer RH, Moroz LL, Zlatic M
Neural Development. 2022 Aug 24;17(1):8. doi: 10.1186/s13064-022-00164-6

Molecular profiles of neurons influence neural development and function but bridging the gap between genes, circuits, and behavior has been very difficult. Here we used single cell RNAseq to generate a complete gene expression atlas of the Drosophila larval central nervous system composed of 131,077 single cells across three developmental stages (1 h, 24 h and 48 h after hatching). We identify 67 distinct cell clusters based on the patterns of gene expression. These include 31 functional mature larval neuron clusters, 1 ring gland cluster, 8 glial clusters, 6 neural precursor clusters, and 13 developing immature adult neuron clusters. Some clusters are present across all stages of larval development, while others are stage specific (such as developing adult neurons). We identify genes that are differentially expressed in each cluster, as well as genes that are differentially expressed at distinct stages of larval life. These differentially expressed genes provide promising candidates for regulating the function of specific neuronal and glial types in the larval nervous system, or the specification and differentiation of adult neurons. The cell transcriptome Atlas of the Drosophila larval nervous system is a valuable resource for developmental biology and systems neuroscience and provides a basis for elucidating how genes regulate neural development and function.

View Publication Page
02/27/13 | A small group of neurosecretory cells expressing the transcriptional regulator apontic and the neuropeptide corazonin mediate ethanol sedation in Drosophila.
McClure KD, Heberlein U
The Journal of Neuroscience. 2013 Feb 27;33(9):4044-54. doi: 10.1523/JNEUROSCI.3413-12.2013

In the fruit fly Drosophila melanogaster, as in mammals, acute exposure to a high dose of ethanol leads to stereotypical behavioral changes beginning with increased activity, followed by incoordination, loss of postural control, and eventually, sedation. The mechanism(s) by which ethanol impacts the CNS leading to ethanol-induced sedation and the genes required for normal sedation sensitivity remain largely unknown. Here we identify the gene apontic (apt), an Myb/SANT-containing transcription factor that is required in the nervous system for normal sensitivity to ethanol sedation. Using genetic and behavioral analyses, we show that apt mediates sensitivity to ethanol sedation by acting in a small set of neurons that express Corazonin (Crz), a neuropeptide likely involved in the physiological response to stress. The activity of Crz neurons regulates the behavioral response to ethanol, as silencing and activating these neurons affects sedation sensitivity in opposite ways. Furthermore, this effect is mediated by Crz, as flies with reduced crz expression show reduced sensitivity to ethanol sedation. Finally, we find that both apt and crz are rapidly upregulated by acute ethanol exposure. Thus, we have identified two genes and a small set of peptidergic neurons that regulate sensitivity to ethanol-induced sedation. We propose that Apt regulates the activity of Crz neurons and/or release of the neuropeptide during ethanol exposure.

View Publication Page