Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lippincottschwartz Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3947 Publications

Showing 2801-2810 of 3947 results
11/16/15 | Propagation of homeostatic sleep signals by segregated synaptic microcircuits of the Drosophila mushroom body.
Sitaraman D, Aso Y, Jin X, Chen N, Felix M, Rubin GM, Nitabach MN
Current Biology : CB. 2015 Nov 16;25(22):2915-27. doi: 10.1016/j.cub.2015.09.017

The Drosophila mushroom body (MB) is a key associative memory center that has also been implicated in the control of sleep. However, the identity of MB neurons underlying homeostatic sleep regulation, as well as the types of sleep signals generated by specific classes of MB neurons, has remained poorly understood. We recently identified two MB output neuron (MBON) classes whose axons convey sleep control signals from the MB to converge in the same downstream target region: a cholinergic sleep-promoting MBON class and a glutamatergic wake-promoting MBON class. Here, we deploy a combination of neurogenetic, behavioral, and physiological approaches to identify and mechanistically dissect sleep-controlling circuits of the MB. Our studies reveal the existence of two segregated excitatory synaptic microcircuits that propagate homeostatic sleep information from different populations of intrinsic MB "Kenyon cells" (KCs) to specific sleep-regulating MBONs: sleep-promoting KCs increase sleep by preferentially activating the cholinergic MBONs, while wake-promoting KCs decrease sleep by preferentially activating the glutamatergic MBONs. Importantly, activity of the sleep-promoting MB microcircuit is increased by sleep deprivation and is necessary for homeostatic rebound sleep (i.e., the increased sleep that occurs after, and in compensation for, sleep lost during deprivation). These studies reveal for the first time specific functional connections between subsets of KCs and particular MBONs and establish the identity of synaptic microcircuits underlying transmission of homeostatic sleep signals in the MB.

View Publication Page
01/08/15 | Proper migration and axon outgrowth of zebrafish cranial motoneuron subpopulations require the cell adhesion molecule MDGA2A.
Ingold E, Vom Berg-Maurer CM, Burckhardt CJ, Lehnherr A, Rieder P, Keller PJ, Stelzer EH, Greber UF, Neuhauss SC, Gesemann M
Biology Open. 2015;4(2):146-54. doi: 10.1242/bio.20148482

The formation of functional neuronal circuits relies on accurate migration and proper axonal outgrowth of neuronal precursors. On the route to their targets migrating cells and growing axons depend on both, directional information from neurotropic cues and adhesive interactions mediated via extracellular matrix molecules or neighbouring cells. The inactivation of guidance cues or the interference with cell adhesion can cause severe defects in neuronal migration and axon guidance. In this study we have analyzed the function of the MAM domain containing glycosylphosphatidylinositol anchor 2A (MDGA2A) protein in zebrafish cranial motoneuron development. MDGA2A is prominently expressed in distinct clusters of cranial motoneurons, especially in the ones of the trigeminal and facial nerves. Analyses of MDGA2A knockdown embryos by light sheet and confocal microscopy revealed impaired migration and aberrant axonal outgrowth of these neurons; suggesting that adhesive interactions mediated by MDGA2A are required for the proper arrangement and outgrowth of cranial motoneuron subtypes.

View Publication Page
04/01/05 | Properties of dopamine release and uptake in the songbird basal ganglia.
Gale SD, Perkel DJ
Journal of Neurophysiology. 2005 Apr;93:1871-9. doi: 10.1152/jn.01053.2004

Vocal learning in songbirds requires a basal ganglia circuit termed the anterior forebrain pathway (AFP). The AFP is not required for song production, and its role in song learning is not well understood. Like the mammalian striatum, the striatal component of the AFP, Area X, receives dense dopaminergic innervation from the midbrain. Since dopamine (DA) clearly plays a crucial role in basal ganglia-mediated motor control and learning in mammals, it seems likely that DA signaling contributes importantly to the functions of Area X as well. In this study, we used voltammetric methods to detect subsecond changes in extracellular DA concentration to gain better understanding of the properties and regulation of DA release and uptake in Area X. We electrically stimulated Ca(2+)- and action potential-dependent release of an electroactive substance in Area X brain slices and identified the substance as DA by the voltammetric waveform, electrode selectivity, and neurochemical and pharmacological evidence. As in the mammalian striatum, DA release in Area X is depressed by autoinhibition, and the lifetime of extracellular DA is strongly constrained by monoamine transporters. These results add to the known physiological similarities of the mammalian and songbird striatum and support further use of voltammetry in songbirds to investigate the role of basal ganglia DA in motor learning.

View Publication Page
02/07/99 | Properties of slow, cumulative sodium channel inactivation in rat hippocampal CA1 pyramidal neurons.
Mickus T, Jung HY, Spruston N
Biophys J. 1999 Feb;76(2):846-60

Sodium channels in the somata and dendrites of hippocampal CA1 pyramidal neurons undergo a form of long-lasting, cumulative inactivation that is involved in regulating back-propagating action potential amplitude and can influence dendritic excitation. Using cell-attached patch-pipette recordings in the somata and apical dendrites of CA1 pyramidal neurons, we determined the properties of slow inactivation on response to trains of brief depolarizations. We find that the amount of slow inactivation gradually increases as a function of distance from the soma. Slow inactivation is also frequency and voltage dependent. Higher frequency depolarizations increase both the amount of slow inactivation and its rate of recovery. Hyperpolarized resting potentials and larger command potentials accelerate recovery from slow inactivation. We compare this form of slow inactivation to that reported in other cell types, using longer depolarizations, and construct a simplified biophysical model to examine the possible gating mechanisms underlying slow inactivation. Our results suggest that sodium channels can enter slow inactivation rapidly from the open state during brief depolarizations or slowly from a fast inactivation state during longer depolarizations. Because of these properties of slow inactivation, sodium channels will modulate neuronal excitability in a way that depends in a complicated manner on the resting potential and previous history of action potential firing.

View Publication Page
02/01/95 | Proposed method for molecular optical imaging. (With commentary)
Betzig E
Optics Letters. 1995 Feb 1;20:237-9

We can resolve multiple discrete features within a focal region of m spatial dimensions by first isolating each on the basis of n >/= 1 unique optical characteristics and then measuring their relative spatial coordinates. The minimum acceptable separation between features depends on the point-spread function in the (m + n)d-dimensional space formed by the spatial coordinates and the optical parameters, whereas the absolute spatial resolution is determined by the accuracy to which the coordinates can be measured. Estimates of each suggest that near-field fluorescence excitation microscopy/spectroscopy with molecular sensitivity and spatial resolution is possible.

Commentary: Inspired by my earlier work (see below) in single molecule imaging and the isolation of multiple exciton recombination sites within a single probe volume, here I proposed the principle which would eventually lead to PALM. Indeed, all methods of localization microscopy, including PALM, fPALM, PALMIRA, STORM, dSTORM, PAINT, GSDIM, etc. are specific embodiments of the general principle of single molecule isolation and localization I introduced here.

View Publication Page
11/21/12 | Proprioceptive coupling within motor neurons drives C. elegans forward locomotion.
Wen Q, Po MD, Hulme E, Chen S, Liu X, Kwok SW, Gershow M, Leifer AM, Butler V, Fang-Yen C, Kawano T, Schafer WR, Whitesides G, Wyart M, Chklovskii DB, Samuel AD
Neuron. 2012 Nov 21;76(4):750-61. doi: 10.1016/j.neuron.2012.08.039

Locomotion requires coordinated motor activity throughout an animal's body. In both vertebrates and invertebrates, chains of coupled central pattern generators (CPGs) are commonly evoked to explain local rhythmic behaviors. In C. elegans, we report that proprioception within the motor circuit is responsible for propagating and coordinating rhythmic undulatory waves from head to tail during forward movement. Proprioceptive coupling between adjacent body regions transduces rhythmic movement initiated near the head into bending waves driven along the body by a chain of reflexes. Using optogenetics and calcium imaging to manipulate and monitor motor circuit activity of moving C. elegans held in microfluidic devices, we found that the B-type cholinergic motor neurons transduce the proprioceptive signal. In C. elegans, a sensorimotor feedback loop operating within a specific type of motor neuron both drives and organizes body movement.

View Publication Page
01/01/04 | Prospects in aphid genetics
DL Stern , JC Simon , CA Dedryver , C Rispe , M Hullé
Aphids in a new millennium. Proceedings of the Sixth International Symposium on Aphids. 09/2004:

This paper identifies the prospects of using aphid species as ideal genetic model systems for the study of evolutionary developmental biology and genetic control of polyphenisms. The advantages and disadvantages of using aphids as genetic model organisms are discussed.

View Publication Page
11/03/14 | Protecting integrated circuits from piracy with test-aware logic locking.
Plaza SM, Markov IL
ICCAD '14 Proceedings of the 2014 IEEE/ACM International Conference on Computer-Aided Design. 2014 Nov 03:262-269. doi: 10.1109/ICCAD.2014.7001361

The increasing IC manufacturing cost encourages a business model where design houses outsource IC fabrication to remote foundries. Despite cost savings, this model exposes design houses to IC piracy as remote foundries can manufacture in excess to sell on the black market. Recent efforts in digital hardware security aim to thwart piracy by using XOR-based chip locking, cryptography, and active metering. To counter direct attacks and lower the exposure of unlocked circuits to the foundry, we introduce a multiplexor-based locking strategy that preserves test response allowing IC testing by an untrusted party before activation. We demonstrate a simple yet effective attack against a locked circuit that does not preserve test response, and validate the effectiveness of our locking strategy on IWLS 2005 benchmarks.

View Publication Page
03/24/14 | Protein design: toward functional metalloenzymes.
Yu F, Cangelosi VM, Zastrow ML, Tegoni M, Plegaria JS, Tebo AG, Mocny CS, Ruckthong L, Qayyum H, Pecoraro VL
Chemical reviews. 03/2014;114:3495 – 3578. doi: 10.1021/cr400458x
04/01/98 | Protein engineering and the development of generic biosensors.
Hellinga HW, Marvin JS
Trends in Biotechnology. 1998 Apr;16(4):183-9

Biosensors exploit the remarkable specificity of biomolecular recognition to provide analytical tools that can measure the presence of a single molecular species in a complex mixture. A new strategy is emerging in the development of biosensor technologies: molecular-engineering techniques are being used to adapt the properties of proteins to simple, generic detector instrumentation, rather than adapting instruments to the unique requirements of a natural molecule.

View Publication Page