Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lippincottschwartz Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3945 Publications

Showing 311-320 of 3945 results
04/06/24 | A tunable and versatile chemogenetic near infrared fluorescent reporter
Lina El Hajji , Benjamin Bunel , Octave Joliot , Chenge Li , Alison G. Tebo , Christine Rampon , Michel Volovitch , Evelyne Fischer , Nicolas Pietrancosta , Franck Perez , Xavier Morin , Sophie Vriz , Arnaud Gautier
bioRxiv. 2024 Apr 6:. doi: 10.1101/2024.04.05.588310

Near-infrared (NIR) fluorescent reporters provide additional colors for highly multiplexed imaging of cells and organisms, and enable imaging with less toxic light and higher contrast and depth. Here, we present the engineering of nirFAST, a small tunable chemogenetic NIR fluorescent reporter that is brighter than top-performing NIR fluorescent proteins in cultured mammalian cells. nirFAST is a small genetically encoded protein of 14 kDa that binds and stabilizes the fluorescent state of synthetic, highly cell-permeant, fluorogenic chromophores (so-called fluorogens) that are otherwise dark when free. Engineered to emit NIR light, nirFAST can also emit far-red or red lights through change of chromophore. nirFAST allows the imaging of proteins in live cultured mammalian cells, chicken embryo tissues and zebrafish larvae. Its near infrared fluorescence provides an additional color for high spectral multiplexing. We showed that nirFAST is well-suited for stimulated emission depletion (STED) nanoscopy, allowing the efficient imaging of proteins with subdiffraction resolution in live cells. nirFAST enabled the design of a chemogenetic green-NIR fluorescent ubiquitination-based cell cycle indicator (FUCCI) for the monitoring of the different phases of the cell cycle. Finally, bisection of nirFAST allowed the design of a fluorogenic chemically induced dimerization technology with NIR fluorescence readout, enabling the control and visualization of protein proximity.

View Publication Page
Gonen Lab
08/13/14 | A type VI secretion-related pathway in bacteroidetes mediates interbacterial antagonism.
Russell AB, Wexler AG, Harding BN, Whitney JC, Bohn AJ, Goo YA, Tran BQ, Barry NA, Zheng H, Peterson SB, Chou S, Gonen T, Goodlett DR, Goodman AL, Mougous JD
Cell Host Microbe. 2014 Aug 13;16(2):227-36. doi: 10.1016/j.chom.2014.07.007

Bacteroidetes are a phylum of Gram-negative bacteria abundant in mammalian-associated polymicrobial communities, where they impact digestion, immunity, and resistance to infection. Despite the extensive competition at high cell density that occurs in these settings, cell contact-dependent mechanisms of interbacterial antagonism, such as the type VI secretion system (T6SS), have not been defined in this group of organisms. Herein we report the bioinformatic and functional characterization of a T6SS-like pathway in diverse Bacteroidetes. Using prominent human gut commensal and soil-associated species, we demonstrate that these systems localize dynamically within the cell, export antibacterial proteins, and target competitor bacteria. The Bacteroidetes system is a distinct pathway with marked differences in gene content and high evolutionary divergence from the canonical T6S pathway. Our findings offer a potential molecular explanation for the abundance of Bacteroidetes in polymicrobial environments, the observed stability of Bacteroidetes in healthy humans, and the barrier presented by the microbiota against pathogens.

View Publication Page
02/27/17 | A variant Sp1 (R218Q) transcription factor might enhance HbF expression in β(0) -thalassaemia homozygotes.
Jiang Z, Luo H, Farrell JJ, Zhang Z, Schulz VP, Albarawi D, Steinberg MH, Al-Allawi NA, Gallagher PG, Forget BG, Chui DH
British Journal of Haematology. 2017 Feb 27;180(5):755-7. doi: 10.1111/bjh.14445
06/21/24 | A vast space of compact strategies for highly efficient decisions
Tzuhsuan Ma , Ann M Hermundstad
Sci. Adv.. 2024 Jun 21;10(25):. doi: 10.1101/2022.08.10.503471

Inference-based decision-making, which underlies a broad range of behavioral tasks, is typically studied using a small number of handcrafted models. We instead enumerate a complete ensemble of strategies that could be used to effectively, but not necessarily optimally, solve a dynamic foraging task. Each strategy is expressed as a behavioral "program" that uses a limited number of internal states to specify actions conditioned on past observations. We show that the ensemble of strategies is enormous-comprising a quarter million programs with up to five internal states-but can nevertheless be understood in terms of algorithmic "mutations" that alter the structure of individual programs. We devise embedding algorithms that reveal how mutations away from a Bayesian-like strategy can diversify behavior while preserving performance, and we construct a compositional description to link low-dimensional changes in algorithmic structure with high-dimensional changes in behavior. Together, this work provides an alternative approach for understanding individual variability in behavior across animals and tasks.

View Publication Page
Pavlopoulos Lab
06/01/11 | A versatile strategy for gene trapping and trap conversion in emerging model organisms.
Kontarakis Z, Pavlopoulos A, Kiupakis A, Konstantinides N, Douris V, Averof M
Development . 2011 Jun;138(12):2625-30. doi: 10.1242/dev.066324

Genetic model organisms such as Drosophila, C. elegans and the mouse provide formidable tools for studying mechanisms of development, physiology and behaviour. Established models alone, however, allow us to survey only a tiny fraction of the morphological and functional diversity present in the animal kingdom. Here, we present iTRAC, a versatile gene-trapping approach that combines the implementation of unbiased genetic screens with the generation of sophisticated genetic tools both in established and emerging model organisms. The approach utilises an exon-trapping transposon vector that carries an integrase docking site, allowing the targeted integration of new constructs into trapped loci. We provide proof of principle for iTRAC in the emerging model crustacean Parhyale hawaiensis: we generate traps that allow specific developmental and physiological processes to be visualised in unparalleled detail, we show that trapped genes can be easily cloned from an unsequenced genome, and we demonstrate targeting of new constructs into a trapped locus. Using this approach, gene traps can serve as platforms for generating diverse reporters, drivers for tissue-specific expression, gene knockdown and other genetic tools not yet imagined.

View Publication Page
02/06/20 | A versatile vector system for the fast generation of knock-in cell lines with CRISPR.
Perez-Leal O, Nixon-Abell J, Barrero CA, Gordon J, Rico MC
bioRxiv. 2020 Feb 06:. doi: 10.1101/2020.02.06.927384

Until recent advancements in genome editing via CRISPR/Cas9 technology, understanding protein function typically involved artificially overexpressing proteins of interest. Despite that CRISPR/Cas9 has ushered in a new era of possibilities for modifying endogenous genes with labeling tags (knock-in) to more accurately study proteins under physiological conditions, the technique is largely underutilized due to its tedious, multi-step process. Here we outline a homologous recombination system (FAST-HDR) to be used in combination with CRISPR/Cas9 that significantly simplifies and accelerates this process while introducing multiplexing to allow live-cell studies of 3 endogenous proteins within the same cell line. Furthermore, the recombination vectors are assembled in a single reaction that is enhanced for eliminating false positives and reduces the overall creation time for the knockin cell line from ~8 weeks to <15 days. Finally, the system utilizes a modular construction to allow for seamlessly swapping labeling tags to ensure flexibility according to the area under study. We validated this new methodology by developing advanced cell lines with 3 fluorescent-labeled endogenous proteins that support high-content phenotypic drug screening without using antibodies or exogenous staining. Therefore, Fast-HDR cell lines provide a robust alternative for studying multiple proteins of interest in live cells without artificially overexpressing labeled proteins.

View Publication Page
07/22/22 | A viral toolbox for conditional and transneuronal gene expression in zebrafish
Satou C, Neve RL, Oyibo HK, Zmarz P, Huang K, Arn Bouldoires E, Mori T, Higashijima S, Keller GB, Friedrich RW, Bagnall MW, Stainier DY, Jin L
eLife. 07/2022;11:e77153. doi: 10.7554/eLife.77153

The zebrafish is an important model in systems neuroscience but viral tools to dissect the structure and function of neuronal circuitry are not established. We developed methods for efficient gene transfer and retrograde tracing in adult and larval zebrafish by herpes simplex viruses (HSV1). HSV1 was combined with the Gal4/UAS system to target cell types with high spatial, temporal, and molecular specificity. We also established methods for efficient transneuronal tracing by modified rabies viruses in zebrafish. We demonstrate that HSV1 and rabies viruses can be used to visualize and manipulate genetically or anatomically identified neurons within and across different brain areas of adult and larval zebrafish. An expandable library of viruses is provided to express fluorescent proteins, calcium indicators, optogenetic probes, toxins and other molecular tools. This toolbox creates new opportunities to interrogate neuronal circuits in zebrafish through combinations of genetic and viral approaches.

View Publication Page
08/07/13 | A visual motion detection circuit suggested by Drosophila connectomics.
Takemura S, Bharioke A, Lu Z, Nern A, Vitaladevuni S, Rivlin PK, Katz WT, Olbris DJ, Plaza SM, Winston P, Zhao T, Horne JA, Fetter RD, Takemura S, Blazek K, Chang L, Ogundeyi O, Saunders MA, Shapiro V, Sigmund C, Rubin GM, Scheffer LK, Meinertzhagen IA, Chklovskii DB
Nature. 2013 Aug 7;500(7461):175–81. doi: doi:10.1038/nature12450

Animal behaviour arises from computations in neuronal circuits, but our understanding of these computations has been frustrated by the lack of detailed synaptic connection maps, or connectomes. For example, despite intensive investigations over half a century, the neuronal implementation of local motion detection in the insect visual system remains elusive. Here we develop a semi-automated pipeline using electron microscopy to reconstruct a connectome, containing 379 neurons and 8,637 chemical synaptic contacts, within the Drosophila optic medulla. By matching reconstructed neurons to examples from light microscopy, we assigned neurons to cell types and assembled a connectome of the repeating module of the medulla. Within this module, we identified cell types constituting a motion detection circuit, and showed that the connections onto individual motion-sensitive neurons in this circuit were consistent with their direction selectivity. Our results identify cellular targets for future functional investigations, and demonstrate that connectomes can provide key insights into neuronal computations.

View Publication Page
03/24/00 | A whole-genome assembly of Drosophila.
Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP, Flanigan MJ, Kravitz SA, Mobarry CM, Reinert KH, Remington KA, Anson EL, Bolanos RA, Chou HH, Jordan CM, Halpern AL, Lonardi S, Beasley EM, Brandon RC, Chen L, Dunn PJ, Lai Z, Liang Y, Nusskern DR, Zhan M, Zhang Q, Zheng X, Rubin GM, Adams MD, Venter JC
Science. 2000 Mar 24;287(5461):2196-204

We report on the quality of a whole-genome assembly of Drosophila melanogaster and the nature of the computer algorithms that accomplished it. Three independent external data sources essentially agree with and support the assembly’s sequence and ordering of contigs across the euchromatic portion of the genome. In addition, there are isolated contigs that we believe represent nonrepetitive pockets within the heterochromatin of the centromeres. Comparison with a previously sequenced 2.9- megabase region indicates that sequencing accuracy within nonrepetitive segments is greater than 99. 99% without manual curation. As such, this initial reconstruction of the Drosophila sequence should be of substantial value to the scientific community.

View Publication Page
Chklovskii Lab
01/01/00 | A wire length minimization approach to ocular dominance patterns in mammalian visual cortex.
Chklovskii DB, Koulakov AA
Physica A. 2000;284:318-34