Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lippincottschwartz Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

4108 Publications

Showing 3201-3210 of 4108 results
Baker Lab
02/16/16 | Sex-specific regulation of Lgr3 in Drosophila neurons.
Meissner GW, Luo SD, Dias BG, Texada MJ, Baker BS
Proceedings of the National Academy of Sciences of the United States of America. 2016 Feb 18:. doi: 10.1073/pnas.1600241113

The development of sexually dimorphic morphology and the potential for sexually dimorphic behavior in Drosophila are regulated by the Fruitless (Fru) and Doublesex (Dsx) transcription factors. Several direct targets of Dsx have been identified, but direct Fru targets have not been definitively identified. We show that Drosophila leucine-rich repeat G protein-coupled receptor 3 (Lgr3) is regulated by Fru and Dsx in separate populations of neurons. Lgr3 is a member of the relaxin-receptor family and a receptor for Dilp8, necessary for control of organ growth. Lgr3 expression in the anterior central brain of males is inhibited by the B isoform of Fru, whose DNA binding domain interacts with a short region of an Lgr3 intron. Fru A and C isoform mutants had no observed effect on Lgr3 expression. The female form of Dsx (Dsx(F)) separately up- and down-regulates Lgr3 expression in distinct neurons in the abdominal ganglion through female- and male-specific Lgr3 enhancers. Excitation of neural activity in the Dsx(F)-up-regulated abdominal ganglion neurons inhibits female receptivity, indicating the importance of these neurons for sexual behavior. Coordinated regulation of Lgr3 by Fru and Dsx marks a point of convergence of the two branches of the sex-determination hierarchy.

View Publication Page
Baker Lab
02/01/85 | Sex-specific regulation of yolk protein gene expression in Drosophila.
Baker B, Belote J, Handler A, Wolfner M, Livak K
Cell. 1985 Feb;40(2):339-48

Many of the genes in the regulatory hierarchy controlling sex determination in Drosophila melanogaster are known. Here we examine how this regulatory hierarchy controls the expression of the structural genes encoding the female-specific yolk polypeptides. Temperature shift experiments with a temperature-sensitive allele of the sex determination regulatory gene transformer-2 (tra-2) showed that tra-2+ function is required in the adult for both the sex-specific initiation and maintenance of YP synthesis. Control of the YP genes by this regulatory hierarchy is at the level of transcription, or transcript stability. The results of temperature shift experiments with abdomens isolated from tra-2ts homozygotes support the notion that the tra-2+ function acts in a cell-autonomous manner to control YP synthesis. These results provide a paradigm for the way this regulatory hierarchy controls the terminal differentiation functions for sexually dimorphic development.

View Publication Page
10/07/22 | Sexual arousal gates visual processing during Drosophila courtship
Hindmarsh Sten T, Li R, Otopalik A, Ruta V
Nature. 2022 Oct 7;595(7868):549 - 553. doi: 10.1038/s41586-021-03714-w

Long-lasting internal arousal states motivate and pattern ongoing behaviour, enabling the temporary emergence of innate behavioural programs that serve the needs of an animal, such as fighting, feeding, and mating. However, how internal states shape sensory processing or behaviour remains unclear. In Drosophila, male flies perform a lengthy and elaborate courtship ritual that is triggered by the activation of sexually dimorphic P1 neurons1,2,3,4,5, during which they faithfully follow and sing to a female6,7. Here, by recording from males as they court a virtual ‘female’, we gain insight into how the salience of visual cues is transformed by a male’s internal arousal state to give rise to persistent courtship pursuit. The gain of LC10a visual projection neurons is selectively increased during courtship, enhancing their sensitivity to moving targets. A concise network model indicates that visual signalling through the LC10a circuit, once amplified by P1-mediated arousal, almost fully specifies a male’s tracking of a female. Furthermore, P1 neuron activity correlates with ongoing fluctuations in the intensity of a male’s pursuit to continuously tune the gain of the LC10a pathway. Together, these results reveal how a male’s internal state can dynamically modulate the propagation of visual signals through a high-fidelity visuomotor circuit to guide his moment-to-moment performance of courtship.

View Publication Page
03/16/12 | Sexual deprivation increases ethanol intake in Drosophila.
Shohat-Ophir G, Kaun K, Azanchi R, Mohammed H, Heberlein U
Science. 2012 Mar 16;335(6074):1351-5. doi: 10.1126/science.1215932

The brain’s reward systems reinforce behaviors required for species survival, including sex, food consumption, and social interaction. Drugs of abuse co-opt these neural pathways, which can lead to addiction. Here, we used Drosophila melanogaster to investigate the relationship between natural and drug rewards. In males, mating increased, whereas sexual deprivation reduced, neuropeptide F (NPF) levels. Activation or inhibition of the NPF system in turn reduced or enhanced ethanol preference. These results thus link sexual experience, NPF system activity, and ethanol consumption. Artificial activation of NPF neurons was in itself rewarding and precluded the ability of ethanol to act as a reward. We propose that activity of the NPF-NPF receptor axis represents the state of the fly reward system and modifies behavior accordingly.

View Publication Page
03/16/12 | Sexual experience affects ethanol intake in Drosophila through Neuropeptide F.
Shohat-Ophir G, Kaun K, Azanchi R, Heberlein U
Science. 03/2012;335(6074):1351-5. doi: 10.1126/science.1215932

The brain’s reward systems reinforce behaviors required for species survival, including sex, food consumption, and social interaction. Drugs of abuse co-opt these neural pathways, which can lead to addiction. Here, we used Drosophila melanogaster to investigate the relationship between natural and drug rewards. In males, mating increased, whereas sexual deprivation reduced, neuropeptide F (NPF) levels. Activation or inhibition of the NPF system in turn reduced or enhanced ethanol preference. These results thus link sexual experience, NPF system activity, and ethanol consumption. Artificial activation of NPF neurons was in itself rewarding and precluded the ability of ethanol to act as a reward. We propose that activity of the NPF–NPF receptor axis represents the state of the fly reward system and modifies behavior accordingly.

View Publication Page
12/07/12 | Sexually Dimorphic BDNF Signaling Directs Sensory Innervation of the Mammary Gland
Yin Liu , Michael Rutlin , Siyi Huang , Colleen A. Barrick , Fan Wang , Kevin R. Jones , Lino Tessarollo , David D. Ginty
Science. 12/2012;338:1357-1360. doi: 10.1126/science.1228258

Male and female mice differ in the neuronal patterns that serve the mammary glands. Yin Liu et al. (p. 1357) now describe how gonadal hormones drive development of distinct male and female sensory innervations. Although both male and female mammary glands develop their sensory innervation similarly in early embryogenesis, once the androgens take effect, the developmental trajectories diverge. By birth, the rich network of sensory neurons present in the female is absent in the male. Androgens cause a switch from expression of the full-length neurotrophin receptor TrkB to its truncated form, TrkB.T1, both of which are expressed on the neurons. In males, truncated TrkB.T1 sequesters brain-derived neurotrophic factor (BDNF) from further activity, whereas in females, full-length TrkB binds BDNF and supports neuronal development. Androgen-driven changes in receptor expression disrupt a neuronal signaling pathway and de-innervation. How neural circuits associated with sexually dimorphic organs are differentially assembled during development is unclear. Here, we report a sexually dimorphic pattern of mouse mammary gland sensory innervation and the mechanism of its formation. Brain-derived neurotrophic factor (BDNF), emanating from mammary mesenchyme and signaling through its receptor TrkB on sensory axons, is required for establishing mammary gland sensory innervation of both sexes at early developmental stages. Subsequently, in males, androgens promote mammary mesenchymal expression of a truncated form of TrkB, which prevents BDNF-TrkB signaling in sensory axons and leads to a rapid loss of mammary gland innervation independent of neuronal apoptosis. Thus, sex hormone regulation of a neurotrophic factor signal directs sexually dimorphic axonal growth and maintenance, resulting in generation of a sex-specific neural circuit.

View Publication Page
06/26/25 | Sexually-dimorphic neurons in the Drosophila whole-brain connectome
Deutsch D, Matsliah A, Wang K, Dorkenwald S, Mondal A, Burke A, Hebditch J, Gager J, Yu S, Sterling A, McKellar A, Schlegel P, Gerhard S, Sterne G, Costa M, Eichler K, Yin Y, Jefferis G, Dickson B, Seung HS, Murthy M
Research Square. 2025 Jun 26:. doi: 10.21203/rs.3.rs-6881911/v1

Sexual dimorphisms are present across brains. Male and female brains contain sets of cell types with differences in cell number, morphology, or synaptic connectivity between the two sexes. These differences are driven by differentially-expressed transcription factors, which set the stage for disparate sexual and social behaviors observed between males and females, such as courtship, aggression, receptivity, and mating. In the Drosophila brain, sexual dimorphisms result from differential expression of two transcription factors, Fruitless (Fru) and Doublesex (Dsx), and genetic reagents driven by enhancers for Fru and Dsx label sexually-dimorphic neurons in both male and female brains. The recent release of the first whole-brain connectome for Drosophila provides a unique opportunity to study the connectivity between these neurons as well as their integration into the larger brain network. Here, we identify 91 putative Fru or Dsx cell types, comprising ~1400 neurons, within the whole-brain connectome, using morphological similarity between electron microscopic (EM) reconstructions and light microscopic (LM) images of known Fru and Dsx neurons. We discover that while Fru and Dsx neurons are highly interconnected, each cell type typically receives more inputs from and sends more outputs to non-Fru/Dsx neurons. We characterize the connectivity in the Fru/Dsx networks to predict the function of cell types not previously characterized, we measure distances to the sensory periphery and uncover multisensory interactions, and we map connections to descending neurons that drive behavior. All Fru and Dsx labels reported here are shared within FlyWire Codex (codex.flywire.ai; gene==Fruitless or Doublesex); this work is a critical first step towards deciphering the neural basis of sexually-dimorphic behaviors and for making comparisons with future connectomes of the male brain.

View Publication Page
Kainmueller Lab
10/29/07 | Shape constrained automatic segmentation of the liver based on a heuristic intensity model.
Kainmueller D, Lange T, Lamecker H
MICCAI Workshop 3D Segmentation in the Clinic. 2007 Oct 29:

We present a fully automatic 3D segmentation method for the liver from contrast-enhanced CT data. It is based on a combination of a constrained free-form and statistical deformable model. The adap- tation of the model to the image data is performed according to a simple model of the typical intensity distribution around the liver boundary and neighboring anatomical structures, considering the potential presence of tumors in the liver. All parameters of the deformation as well as the initial positioning of the model in the data are estimated automatically. 

View Publication Page
09/01/08 | Shape registration by optimally coding shapes.
Jiang Y, Xie J, Tsui H
IEEE Transactions on Information Technology in Biomedicine : A Publication of the IEEE Engineering in Medicine and Biology Society. 2008 Sep;12(5):627-35. doi: 10.1109/TITB.2008.920798

This paper formulates shape registration as an optimal coding problem. It employs a set of landmarks to establish the correspondence between shapes, and assumes that the best correspondence can be achieved when the polygons formed by the landmarks optimally code all the shape contours, i.e., obtain their minimum description length (MDL). This is different from previous MDL-based shape registration methods, which code the landmark locations. In this paper, each contour is discretized to be a set of points to make the coding feasible, and a number of strategies are adopted to tackle the difficult optimization problem involved. The resulting algorithm, called CAP, is able to yield statistical shape model with better quality in terms of model generalization error, which is demonstrated on both synthetic and biomedical shapes.

View Publication Page
05/01/17 | Shaping development by stochasticity and dynamics in gene regulation.
Dong P, Liu Z
Open Biology. 2017 May;7(5):. doi: 10.1098/rsob.170030

Animal development is orchestrated by spatio-temporal gene expression programmes that drive precise lineage commitment, proliferation and migration events at the single-cell level, collectively leading to large-scale morphological change and functional specification in the whole organism. Efforts over decades have uncovered two 'seemingly contradictory' mechanisms in gene regulation governing these intricate processes: (i) stochasticity at individual gene regulatory steps in single cells and (ii) highly coordinated gene expression dynamics in the embryo. Here we discuss how these two layers of regulation arise from the molecular and the systems level, and how they might interplay to determine cell fate and to control the complex body plan. We also review recent technological advancements that enable quantitative analysis of gene regulation dynamics at single-cell, single-molecule resolution. These approaches outline next-generation experiments to decipher general principles bridging gaps between molecular dynamics in single cells and robust gene regulations in the embryo.

View Publication Page