Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lippincottschwartz Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3945 Publications

Showing 551-560 of 3945 results
Chklovskii LabFlyEM
08/06/15 | Automatic adaptation to fast input changes in a time-invariant neural circuit.
Bharioke A, Chklovskii DB
PLoS Computational Biology. 2015 Aug 6;11(8):e1004315. doi: 10.1371/journal.pcbi.1004315
Kainmueller Lab
10/01/12 | Automatic detection and classification of teeth in CT data.
Duy NT, Lamecker H, Kainmueller D, Zachow S
Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention. 2012;15(Pt 1):609-16

We propose a fully automatic method for tooth detection and classification in CT or cone-beam CT image data. First we compute an accurate segmentation of the maxilla bone. Based on this segmentation, our method computes a complete and optimal separation of the row of teeth into 16 subregions and classifies the resulting regions as existing or missing teeth. This serves as a prerequisite for further individual tooth segmentation. We show the robustness of our approach by providing extensive validation on 43 clinical head CT scans.

View Publication Page
07/01/21 | Automatic Detection of Synaptic Partners in a Whole-Brain Drosophila EM Dataset
Buhmann J, Sheridan A, Gerhard S, Krause R, Nguyen T, Heinrich L, Schlegel P, Lee WA, Wilson R, Saalfeld S, Jefferis G, Bock D, Turaga S, Cook M, Funke J
Nature Methods. 2021 Jul 1;18(7):771-4. doi: 10.1038/s41592-021-01183-7

The study of neural circuits requires the reconstruction of neurons and the identification of synaptic connections between them. To scale the reconstruction to the size of whole-brain datasets, semi-automatic methods are needed to solve those tasks. Here, we present an automatic method for synaptic partner identification in insect brains, which uses convolutional neural networks to identify post-synaptic sites and their pre-synaptic partners. The networks can be trained from human generated point annotations alone and requires only simple post-processing to obtain final predictions. We used our method to extract 244 million putative synaptic partners in the fifty-teravoxel full adult fly brain (FAFB) electron microscopy (EM) dataset and evaluated its accuracy on 146,643 synapses from 702 neurons with a total cable length of 312 mm in four different brain regions. The predicted synaptic connections can be used together with a neuron segmentation to infer a connectivity graph with high accuracy: 96% of edges between connected neurons are correctly classified as weakly connected (less than five synapses) and strongly connected (at least five synapses). Our synaptic partner predictions for the FAFB dataset are publicly available, together with a query library allowing automatic retrieval of up- and downstream neurons.

View Publication Page
Grigorieff Lab
11/01/15 | Automatic estimation and correction of anisotropic magnification distortion in electron microscopes.
Grant T, Grigorieff N
Journal of Structural Biology. 2015 Nov;192(2):204-8. doi: 10.1016/j.jsb.2015.08.006

We demonstrate a significant anisotropic magnification distortion, found on an FEI Titan Krios microscope and affecting magnifications commonly used for data acquisition on a Gatan K2 Summit detector. We describe a program (mag_distortion_estimate) to automatically estimate anisotropic magnification distortion from a set of images of a standard gold shadowed diffraction grating. We also describe a program (mag_distortion_correct) to correct for the estimated distortion in collected images. We demonstrate that the distortion present on the Titan Krios microscope limits the resolution of a set of rotavirus VP6 images to ∼7 Å, which increases to ∼3 Å following estimation and correction of the distortion. We also use a 70S ribosome sample to demonstrate that in addition to affecting resolution, magnification distortion can also interfere with the classification of heterogeneous data.

View Publication Page
Kainmueller Lab
08/07/09 | Automatic Extraction of Anatomical Landmarks From Medical Image Data: An Evaluation of Different Methods
Kainmueller D, Hans-Christian Hege , Heiko Seim , Markus Heller , Stefan Zachow

This work presents three different methods for automatic detection of anatomical landmarks in CT data, namely for the left and right anterior superior iliac spines and the pubic symphysis. The methods exhibit different degrees of generality in terms of portability to other anatomical landmarks and require a different amount of training data. The ſrst method is problem-speciſc and is based on the convex hull of the pelvis. Method two is a more generic approach based on a statistical shape model including the landmarks of interest for every training shape. With our third method we present the most generic approach, where only a small set of training landmarks is required. Those landmarks are transferred to the patient speciſc geometry based on Mean Value Coordinates (MVCs). The methods work on surfaces of the pelvis that need to be extracted beforehand. We perform this geometry reconstruction with our previously introduced fully automatic segmentation framework for the pelvic bones. With a focus on the accuracy of our novel MVC-based approach, we evaluate and compare our methods on 100 clinical CT datasets, for which gold standard landmarks were deſned manually by multiple observers.

View Publication Page
Kainmueller Lab
08/19/11 | Automatic extraction of mandibular nerve and bone from cone-beam CT data.
Kainmueller D, Lamecker H, Seim H, Zinser M, Zachow S
Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention. 2009;12(Pt 2):76-83

The exact localization of the mandibular nerve with respect to the bone is important for applications in dental implantology and maxillofacial surgery. Cone beam computed tomography (CBCT), often also called digital volume tomography (DVT), is increasingly utilized in maxillofacial or dental imaging. Compared to conventional CT, however, soft tissue discrimination is worse due to a reduced dose. Thus, small structures like the alveolar nerves are even harder recognizable within the image data. We show that it is nonetheless possible to accurately reconstruct the 3D bone surface and the course of the nerve in a fully automatic fashion, with a method that is based on a combined statistical shape model of the nerve and the bone and a Dijkstra-based optimization procedure. Our method has been validated on 106 clinical datasets: the average reconstruction error for the bone is 0.5 +/- 0.1 mm, and the nerve can be detected with an average error of 1.0 +/- 0.6 mm.

View Publication Page
07/10/07 | Automatic image analysis for gene expression patterns of fly embryos.
Peng H, Long F, Zhou J, Leung G, Eisen MB, Myers EW
BMC Cell Biology. 2007 Jul 10;8(Supplement 1):S7. doi: 10.1007/s12021-010-9090-x

Staining the mRNA of a gene via in situ hybridization (ISH) during the development of a D. melanogaster embryo delivers the detailed spatio-temporal pattern of expression of the gene. Many biological problems such as the detection of co-expressed genes, co-regulated genes, and transcription factor binding motifs rely heavily on the analyses of these image patterns. The increasing availability of ISH image data motivates the development of automated computational approaches to the analysis of gene expression patterns.

View Publication Page
11/07/08 | Automatic landmark correspondence detection for ImageJ.
Saalfeld S, Tomancak P
Proceedings of the ImageJ User and Developer Conference. 2008 Nov 7:

Landmark correspondences can be used for various tasks in image processing such as image alignment, reconstruction of panoramic photographs, object recognition and simultaneous localization and mapping for mobile robots. The computer vision community knows several techniques for extracting and pairwise associating such landmarks using distinctive invariant local image features. Two very successful methods are the Scale Invariant Feature Transform (SIFT)1 and Multi-Scale Oriented Patches (MOPS).2
We implemented these methods in the Java programming language3 for seamless use in ImageJ.4 We use it for fully automatic registration of gigantic serial section Transmission Electron Microscopy (TEM) mosaics. Using automatically detected landmark correspondences, the registration of large image mosaics simplifies to globally minimizing the displacement of corresponding points.
We present here an introduction to automatic landmark correspondence detection and demonstrate our implementation for ImageJ. We demonstrate the application of the plug-in on diverse image data.

View Publication Page
01/01/10 | Automatic neuron tracing in volumetric microscopy images with anisotropic path searching.
Xie J, Zhao T, Lee T, Myers E, Peng H
Medical Image Computing and Computer-Assisted Intervention: MICCAI International Conference on Medical Image Computing and Computer-Assisted Intervention. 2010;13:472-9

Full reconstruction of neuron morphology is of fundamental interest for the analysis and understanding of neuron function. We have developed a novel method capable of tracing neurons in three-dimensional microscopy data automatically. In contrast to template-based methods, the proposed approach makes no assumptions on the shape or appearance of neuron’s body. Instead, an efficient seeding approach is applied to find significant pixels almost certainly within complex neuronal structures and the tracing problem is solved by computing an graph tree structure connecting these seeds. In addition, an automated neuron comparison method is introduced for performance evaluation and structure analysis. The proposed algorithm is computationally efficient. Experiments on different types of data show promising results.

View Publication Page
09/05/14 | Automatic neuron type identification by neurite localization in the Drosophila medulla.
Plaza SM, Zhao T
arXiv. 2014 Sep 5:arXiv:1409.1892 [q-bio.NC]

Mapping the connectivity of neurons in the brain (i.e., connectomics) is a challenging problem due to both the number of connections in even the smallest organisms and the nanometer resolution required to resolve them. Because of this, previous connectomes contain only hundreds of neurons, such as in the C.elegans connectome. Recent technological advances will unlock the mysteries of increasingly large connectomes (or partial connectomes). However, the value of these maps is limited by our ability to reason with this data and understand any underlying motifs. To aid connectome analysis, we introduce algorithms to cluster similarly-shaped neurons, where 3D neuronal shapes are represented as skeletons. In particular, we propose a novel location-sensitive clustering algorithm. We show clustering results on neurons reconstructed from the Drosophila medulla that show high-accuracy.

View Publication Page