Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lippincottschwartz Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3945 Publications

Showing 561-570 of 3945 results
03/01/07 | Automatic recognition and annotation of gene expression patterns of fly embryos.
Zhou J, Peng H
Bioinformatics. 2007 Mar 1;23(5):589-96. doi: 10.1007/s12021-010-9090-x

Gene expression patterns obtained by in situ mRNA hybridization provide important information about different genes during Drosophila embryogenesis. So far, annotations of these images are done by manually assigning a subset of anatomy ontology terms to an image. This time-consuming process depends heavily on the consistency of experts.

View Publication Page
04/02/08 | Automatic recognition of cells (ARC) for 3D images of C. elegans.
Long F, Peng H, Liu X, Kim SK, Myers E
Proceedings of the 2008 Conference on Computational Molecular Biology (RECOMB) (Singapore, 2008). 2008 Apr 2:

The development of high-resolution microscopy makes possible the high-throughput screening of cellular information, such as gene expression at single cell resolution. One of the critical enabling techniques yet to be developed is the automatic recognition or annotation of specific cells in a 3D image stack. In this paper, we present a novel graph-based algorithm, ARC, that determines cell identities in a 3D confocal image of C. elegans based on their highly stereotyped arrangement. This is an essential step in our work on gene expression analysis of C. elegans at the resolution of single cells. Our ARC method integrates both the absolute and relative spatial locations of cells in a C. elegans body. It uses a marker-guided, spatially-constrained, two-stage bipartite matching to find the optimal match between cells in a subject image and cells in 15 template images that have been manually annotated and vetted. We applied ARC to the recognition of cells in 3D confocal images of the first larval stage (L1) of C. elegans hermaphrodites, and achieved an average accuracy of 94.91%.

View Publication Page
Sternson Lab
06/15/10 | Automatic reconstruction of 3D neuron structures using a graph-augmented deformable model.
Peng H, Ruan Z, Atasoy D, Sternson S
Bioinformatics. 2010 Jun 15;26:i38-46. doi: 10.1093/bioinformatics/btq212

Digital reconstruction of 3D neuron structures is an important step toward reverse engineering the wiring and functions of a brain. However, despite a number of existing studies, this task is still challenging, especially when a 3D microscopic image has low single-to-noise ratio and discontinued segments of neurite patterns.

View Publication Page
04/12/07 | Automatic segmentation of nuclei in 3D microscopy images of C. elegans.
Long F, Peng H, Myers E
2007 4TH IEEE International Symposium on Biomedical Imaging: Macro to Nano, VOLS 1-3. 2007 Apr 12-15:536-9

Automatic segmentation of nuclei in 3D microscopy images is essential for many biological studies including high throughput analysis of gene expression level, morphology, and phenotypes in single cell level. The complexity and variability of the microscopy images present many difficulties to the traditional image segmentation methods. In this paper, we present a new method based on 3D watershed algorithm to segment such images. By using both the intensity information of the image and the geometry information of the appropriately detected foreground mask, our method is robust to intensity fluctuation within nuclei and at the same time sensitive to the intensity and geometrical cues between nuclei. Besides, the method can automatically correct potential segmentation errors by using several post-processing steps. We tested this algorithm on the 3D confocal images of C.elegans, an organism that has been widely used in biological studies. Our results show that the algorithm can segment nuclei in high accuracy despite the non-uniform background, tightly clustered nuclei with different sizes and shapes, fluctuated intensities, and hollow-shaped staining patterns in the images.

View Publication Page
01/01/08 | Automatic Segmentation of the Pelvic Bones from CT Data Based on a Statistical Shape Model
Kainmueller D, Seim H, Heller M, Lamecker H, Zachow S, Hege H

We present an algorithm for automatic segmentation of the human pelvic bones from CT datasets that is based on the application of a statistical shape model. The proposed method is divided into three steps: 1) The averaged shape of the pelvis model is initially placed within the CT data using the Generalized Hough Transform, 2) the statistical shape model is then adapted to the image data by a transformation and variation of its shape modes, and 3) a final free-form deformation step based on optimal graph searching is applied to overcome the restrictive character of the statistical shape representation. We thoroughly evaluated the method on 50 manually segmented CT datasets by performing a leave-one-out study. The Generalized Hough Transform proved to be a reliable method for an automatic initial placement of the shape model within the CT data. Compared to the manual gold standard segmentations, our automatic segmentation approach produced an average surface distance of 1.2 ± 0.3mm after the adaptation of the statistical shape model, which could be reduced to 0.7±0.3mm using a final free-form deformation step. Together with an average segmentation time of less than 5 minutes, the results of our study indicate that our method meets the requirements of clinical routine.

View Publication Page
09/06/08 | Automatic tracking of Escherichia coli bacteria.
Xie J, Khan S, Shah M
Medical Image Computing and Computer-Assisted Intervention: MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention. 2008 Sep 6;11:824-32

In this paper, we present an automatic method for estimating the trajectories of Escherichia coli bacteria from in vivo phase-contrast microscopy videos. To address the low-contrast boundaries in cellular images, an adaptive kernel-based technique is applied to detect cells in sequence of frames. Then a novel matching gain measure is introduced to cope with the challenges such as dramatic changes of cells’ appearance and serious overlapping and occlusion. For multiple cell tracking, an optimal matching strategy is proposed to improve the handling of cell collision and broken trajectories. The results of successful tracking of Escherichia coli from various phase-contrast sequences are reported and compared with manually-determined trajectories, as well as those obtained from existing tracking methods. The stability of the algorithm with different parameter values is also analyzed and discussed.

View Publication Page
02/01/09 | Automatic tracking of Escherichia coli in phase-contrast microscopy video.
Xie J, Khan S, Shah M
IEEE Transactions on Bio-Medical Engineering. 2009 Feb;56(2):390-9. doi: 10.1109/TBME.2008.2005956

In this paper, we present an automatic method for estimating the trajectories of Escherichia coli bacteria from in vivo phase-contrast microscopy. To address the low-contrast boundaries in cellular images, an adaptive kernel-based technique is applied to detect cells in each frame. In addition to intensity features, region homogeneity measure and class uncertainty are also applied in this detection technique. To track cells with complex motion, a novel matching gain measure is introduced to cope with the challenges, particularly the presence of low-contrast boundary, the variations of appearance, and the frequent overlapping and occlusion. For multicell tracking over time, an optimal matching strategy is introduced to improve the handling of cell collision and broken trajectories. The results of successful tracking of Escherichia coli from various phase-contrast sequences are reported and compared with manually determined trajectories, as well as those obtained from existing tracking schemes. The stability of the algorithm with different parameter values is also analyzed and discussed.

View Publication Page
Chklovskii Lab
01/30/09 | Automation of 3D reconstruction of neural tissue from large volume of conventional serial section transmission electron micrographs.
Mishchenko Y
Journal of Neuroscience Methods. 2009 Jan 30;176(2):276-89. doi: 10.1016/j.jneumeth.2008.09.006

We describe an approach for automation of the process of reconstruction of neural tissue from serial section transmission electron micrographs. Such reconstructions require 3D segmentation of individual neuronal processes (axons and dendrites) performed in densely packed neuropil. We first detect neuronal cell profiles in each image in a stack of serial micrographs with multi-scale ridge detector. Short breaks in detected boundaries are interpolated using anisotropic contour completion formulated in fuzzy-logic framework. Detected profiles from adjacent sections are linked together based on cues such as shape similarity and image texture. Thus obtained 3D segmentation is validated by human operators in computer-guided proofreading process. Our approach makes possible reconstructions of neural tissue at final rate of about 5 microm3/manh, as determined primarily by the speed of proofreading. To date we have applied this approach to reconstruct few blocks of neural tissue from different regions of rat brain totaling over 1000microm3, and used these to evaluate reconstruction speed, quality, error rates, and presence of ambiguous locations in neuropil ssTEM imaging data.

View Publication Page
05/18/23 | Autophagy receptor NDP52 alters DNA conformation to modulate RNA polymerase II transcription.
Dos Santos Á, Rollins DE, Hari-Gupta Y, McArthur H, Du M, Ru SY, Pidlisna K, Stranger A, Lorgat F, Lambert D, Brown I, Howland K, Aaron J, Wang L, Ellis PJ, Chew T, Martin-Fernandez M, Pyne AL, Toseland CP
Nature Communications. 2023 May 18;14(1):2855. doi: 10.1038/s41467-023-38572-9

NDP52 is an autophagy receptor involved in the recognition and degradation of invading pathogens and damaged organelles. Although NDP52 was first identified in the nucleus and is expressed throughout the cell, to date, there is no clear nuclear functions for NDP52. Here, we use a multidisciplinary approach to characterise the biochemical properties and nuclear roles of NDP52. We find that NDP52 clusters with RNA Polymerase II (RNAPII) at transcription initiation sites and that its overexpression promotes the formation of additional transcriptional clusters. We also show that depletion of NDP52 impacts overall gene expression levels in two model mammalian cells, and that transcription inhibition affects the spatial organisation and molecular dynamics of NDP52 in the nucleus. This directly links NDP52 to a role in RNAPII-dependent transcription. Furthermore, we also show that NDP52 binds specifically and with high affinity to double-stranded DNA (dsDNA) and that this interaction leads to changes in DNA structure in vitro. This, together with our proteomics data indicating enrichment for interactions with nucleosome remodelling proteins and DNA structure regulators, suggests a possible function for NDP52 in chromatin regulation. Overall, here we uncover nuclear roles for NDP52 in gene expression and DNA structure regulation.

View Publication Page
02/01/10 | Axial CID and high pressure resonance CID in a miniature ion trap mass spectrometer using a discontinuous atmospheric pressure interface.
Gao L, Li G, Cooks RG
Journal of the American Society for Mass Spectrometry. 2010 Feb;21(2):209-14. doi: 10.1364/AO.50.001792

Axial collision induced dissociation (CID) and high-pressure resonance CID were implemented and compared with normal low-pressure resonance CID in a miniature ion trap mass spectrometer to obtain more complete fragmentation spectra. Axial CID was realized simply by applying a potential to the discontinuous atmospheric pressure interface (DAPI) capillary without performing parent ion isolation before dissociation. High-pressure resonance CID employed a double-introduction pulse scan function, by means of which precursor ions isolated at low-pressure (<10(-3) torr) were dissociated at high-pressure (0.1 torr-1 torr) with higher excitation energy, so that tandem MS of isolated precursor ions was achieved and extensive fragmentation was obtained. A simple peptide (Leu-enkephalin) and dye molecule (rhodamine B) ionized by ESI were used to investigate both methods and compare them with normal low-pressure resonance CID.

View Publication Page