Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lippincottschwartz Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3945 Publications

Showing 581-590 of 3945 results
03/09/20 | Basement Membrane Regulates Fibronectin Organization Using Sliding Focal Adhesions Driven by a Contractile Winch
Jiaoyang Lu , Andrew D. Doyle , Yoshinari Shinsato , Shaohe Wang , Molly A. Bodendorfer , Minhua Zheng , Kenneth M. Yamada
Developmental Cell. 03/2020;52:631-646.e4. doi: https://doi.org/10.1016/j.devcel.2020.01.007

Summary We have discovered that basement membrane and its major components can induce rapid, strikingly robust fibronectin organization. In this new matrix assembly mechanism, α5β1 integrin-based focal adhesions slide actively on the underlying matrix toward the ventral cell center through the dynamic shortening of myosin IIA-associated actin stress fibers to drive rapid fibronectin fibrillogenesis distal to the adhesion. This mechanism contrasts with classical fibronectin assembly based on stable or fixed-position focal adhesions containing αVβ3 integrins plus α5β1 integrin translocation into proximal fibrillar adhesions. On basement membrane components, these sliding focal adhesions contain standard focal adhesion constituents but completely lack classical αVβ3 integrins. Instead, peripheral α3β1 or α2β1 adhesions mediate initial cell attachment but over time are switched to α5β1 integrin-based sliding focal adhesions to assemble fibronectin matrix. This basement-membrane-triggered mechanism produces rapid fibronectin fibrillogenesis, providing a mechanistic explanation for the well-known widespread accumulation of fibronectin at many organ basement membranes.

View Publication Page
10/05/90 | Basic local alignment search tool.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ
Journal of Molecular Biology. 1990 Oct 5;215(3):403-10. doi: 10.1006/jmbi.1990.9999

A new approach to rapid sequence comparison, basic local alignment search tool (BLAST), directly approximates alignments that optimize a measure of local similarity, the maximal segment pair (MSP) score. Recent mathematical results on the stochastic properties of MSP scores allow an analysis of the performance of this method as well as the statistical significance of alignments it generates. The basic algorithm is simple and robust; it can be implemented in a number of ways and applied in a variety of contexts including straightforward DNA and protein sequence database searches, motif searches, gene identification searches, and in the analysis of multiple regions of similarity in long DNA sequences. In addition to its flexibility and tractability to mathematical analysis, BLAST is an order of magnitude faster than existing sequence comparison tools of comparable sensitivity.

View Publication Page
10/01/02 | Basic transcription element binding protein is a thyroid hormone-regulated transcription factor expressed during metamorphosis in Xenopus laevis.
Hoopfer ED, Huang L, Denver RJ
Development, Growth & Differentiation. 2002 Oct;44:365-81

Basic transcription element binding protein (BTEB) is a member of the Krüppel family of zinc finger transcription factors. It has been shown that BTEB plays a role in promoting neuronal process formation during postembryonic development. In the present study, the biochemical properties, transactivation function, and the developmental and hormone-regulated expression of BTEB in Xenopus laevis (xBTEB) are described. xBTEB binds the GC-rich basic transcription element (BTE) with high affinity and functions as a transcriptional activator on promoters containing multiple or single GC boxes. xBTEB mRNA levels increase in the tadpole brain, intestine and tail during metamorphosis, and are correlated with tissue-specific morphological and biochemical transformations. xBTEB mRNA expression can be induced precociously in premetamorphic tadpole tissues by treatment with thyroid hormone. In situ hybridization histochemistry showed that thyroid hormone upregulates xBTEB mRNA throughout the brain of premetamorphic tadpoles, with the highest expression found in the subventricular zones of the telencephalon, diencephalon, optic tectum, cerebellum and spinal cord. xBTEB protein parallels changes in its mRNA, and it was found that xBTEB is not expressed in mitotic cells in the developing brain, but is expressed just distal to the proliferative zone, supporting the hypothesis that this protein plays a role in neural cell differentiation.

View Publication Page
12/04/11 | Bayesian localization microscopy reveals nanoscale podosome dynamics.
Cox S, Rosten E, Monypenny J, Jovanovic-Talisman T, Burnette DT, Lippincott-Schwartz J, Jones GE, Heintzmann R
Nature methods. 2012 Feb;9(2):195-200. doi: 10.1038/nmeth.1812

We describe a localization microscopy analysis method that is able to extract results in live cells using standard fluorescent proteins and xenon arc lamp illumination. Our Bayesian analysis of the blinking and bleaching (3B analysis) method models the entire dataset simultaneously as being generated by a number of fluorophores that may or may not be emitting light at any given time. The resulting technique allows many overlapping fluorophores in each frame and unifies the analysis of the localization from blinking and bleaching events. By modeling the entire dataset, we were able to use each reappearance of a fluorophore to improve the localization accuracy. The high performance of this technique allowed us to reveal the nanoscale dynamics of podosome formation and dissociation throughout an entire cell with a resolution of 50 nm on a 4-s timescale.

View Publication Page
03/27/09 | Bead-based mosaicing of single plane illumination microscopy images using geometric local descriptor matching.
Preibisch S, Saalfeld S, Rohlfing T, Tomancak P
Medical Imaging 2009: Image Processing. 2009 Mar 27;7259:72592S. doi: 10.1117/12.812612

Single Plane Illumination Microscopy (SPIM) is an emerging microscopic technique that enables live imaging of large biological specimens in their entirety. By imaging the biological sample from multiple angles, SPIM has the potential to achieve isotropic resolution throughout relatively large biological specimens. For every angle, however, only a shallow section of the specimen is imaged with high resolution, whereas deeper regions appear increasingly blurred. Existing intensity-based registration techniques still struggle to robustly and accurately align images that are characterized by limited overlap and/or heavy blurring. To be able to register such images, we add sub-resolution fluorescent beads to the rigid agarose medium in which the imaged specimen is embedded. For each segmented bead, we store the relative location of its n nearest neighbors in image space as rotation-invariant geometric local descriptors. Corresponding beads between overlapping images are identified by matching these descriptors. The bead correspondences are used to simultaneously estimate the globally optimal transformation for each individual image. The final output image is created by combining all images in an angle-independent output space, using volume injection and local content-based weighting of contributing images. We demonstrate the performance of our approach on data acquired from living embryos of Drosophila and fixed adult C.elegans worms. Bead-based registration outperformed intensity-based registration in terms of computation speed by two orders of magnitude while producing bead registration errors below 1 μm (about 1 pixel). It, therefore, provides an ideal tool for processing of long term time-lapse recordings of embryonic development consisting of hundreds of time points.

View Publication Page
Grigorieff Lab
03/01/12 | Beam-induced motion of vitrified specimen on holey carbon film.
Brilot AF, Chen JZ, Cheng A, Pan J, Harrison SC, Potter CS, Carragher B, Henderson R, Grigorieff N
Journal of Structural Biology. 2012 Mar;177(3):630-7. doi: 10.1016/j.jsb.2012.02.003

The contrast observed in images of frozen-hydrated biological specimens prepared for electron cryo-microscopy falls significantly short of theoretical predictions. In addition to limits imposed by the current instrumentation, it is widely acknowledged that motion of the specimen during its exposure to the electron beam leads to significant blurring in the recorded images. We have studied the amount and direction of motion of virus particles suspended in thin vitrified ice layers across holes in perforated carbon films using exposure series. Our data show that the particle motion is correlated within patches of 0.3-0.5 μm, indicating that the whole ice layer is moving in a drum-like motion, with accompanying particle rotations of up to a few degrees. Support films with smaller holes, as well as lower electron dose rates tend to reduce beam-induced specimen motion, consistent with a mechanical effect. Finally, analysis of movies showing changes in the specimen during beam exposure show that the specimen moves significantly more at the start of an exposure than towards its end. We show how alignment and averaging of movie frames can be used to restore high-resolution detail in images affected by beam-induced motion.

View Publication Page

Soldier-producing aphids have evolved at least nine separate times. The larvae of soldier-producing species can be organized into three general categories: monomorphic larvae, dimorphic larvae with a reproductive soldier caste, and dimorphic larvae with a sterile soldier caste. Here we report the discovery of a novel soldier type in an undescribed species of Pseudoregma that is morphologically similar to P. bambucicola. A colony of this species produced morphologically monomorphic first-instar larvae with a defensive behavioral dimorphism. These larvae attacked natural predators, and larval response to a simple assay, placing the tips of forceps in front of larvae, was correlated with this attacking behavior. Approximately one third of the first-instar larvae in the colony attacked and this proportion was uncorrelated with the time of day, the ambient temperature, or the diel migratory behavior of the aphids. Migrating larvae rarely attacked. Attacking behavior was correlated with another defensive behavior, hind-leg waving. Attackers were more likely to possess the next-instar skin, suggesting that they were older than non-attackers. This is the first example of a possible within-instar age polyethism in soldier-producing aphids. Canonical variates analysis of seven morphological measurements failed to discriminate between attacking and non-attacking larvae. The monomorphic larvae share some morphometric characteristics in common with the soldiers of P. bambucicola and other characteristics in common with normal larvae. We discuss these results with respect to the evolution and loss of soldier castes in the tribe Cerataphidini.

View Publication Page
02/09/15 | Behavioral and biological effects of chronic S18986, a positive AMPA receptor modulator, during aging.
Bloss EB, Hunter RG, Waters EM, Munoz C, Bernard K, McEwen BS
Exp Neurol. 2008 Mar;210(1):109-17. doi: 10.1016/j.expneurol.2007.10.007

AMPA receptors are a major subtype of ionotropic receptors that respond to glutamate. Positive allosteric modulators of AMPA receptors selectively enhance fast excitatory neurotransmission in the brain and increase overall neuronal excitability. In addition to enhancing cognitive performance, S18986 (Servier, France) and other AMPA receptor modulators have also been shown to be neuroprotective. A particularly relevant context for AMPAR modulator studies is during aging because of increased neuronal vulnerability. It is currently unknown if chronic AMPAR modulator treatment can alter the course of brain aging, a process characterized by impairment of cognitive function, reduced neuronal excitability, and increased inflammation in the brain. We examined the behavioral and some relevant CNS effects of chronic S18986 in rats from 14 to 18 months of age. Here we show that chronic, oral administration of S18986 increases locomotor activity and performance in a spatial memory task in aged rodents. In addition, chronic S18986 treatment retards the decline of forebrain cholinergic neurons by roughly 37% and midbrain dopaminergic neurons by as much as 43% during aging and attenuates the age-related increase in the expression of a microglial marker in the hippocampus. These results provide a framework for further studies of the potentially beneficial effects of AMPAR modulators on brain aging.

View Publication Page
Baker Lab
01/01/94 | Behavioral and neurobiological implications of sex-determining factors in Drosophila.
Baker B, Taylor B, Villella. A. , Ryner L, Hall J
Developmental. Genetics. 1994;15(3):275-96

The function of the central nervous system as it controls sex-specific behaviors in Drosophila has been studied with renewed intensity, in the context of genetic factors that influence the development of sexually differentiated aspects of this insect. Three categories of genetic variations that cause anomalies in courtship and mating behaviors are discussed: (1) mutants isolated with regard to courtship defects, of which putatively courtship-specific variants such as the fruitless mutant are a subset; (2) general behavioral and neurological variants (including sensory and learning mutants), whose defects include subnormal reproductive performance; and (3) mutations of genes within the sex-determination regulatory hierarchy of Drosophila, the analysis of which has included studies of reproductive behavior. Recent studies of mutations in two of these categories have provided new insights into the control of neuronally based aspects of sex-specific behavior. The doublesex gene, the final factor acting in the sex-determination hierarchy, had been previously thought to regulate all aspects of sexual differentiation. Yet, it has been recently shown that doublesex does not control at least one neuronally-determined feature of sex-specific anatomy--a muscle in the male's abdomen, whose normal development is, however, dependent on the action of fruitless. These considerations prompted us to examine further (and in some cases re-examine) the influences exerted by sex-determination hierarchy genes on behavior. Our results--notably those obtained from assessments of doublesex mutations' effects on general reproductive actions and on a particular component of the courtship sequence (male "singing" behavior)--lead to the suggestion that there is a previously unrecognized branch within the sex-determination hierarchy, which controls the differentiation of the male- and female- specific phenotypes of Drosophila. This new branch separates from the doublesex-related one immediately before the action of that gene (just after transformer and transformer-2) and appears to control as least some aspects of neuronally determined sexual differentiation of males.

View Publication Page
02/17/20 | Behavioral features of motivated response to alcohol in Drosophila.
Catalano JL, Mei N, Azanchi R, Song S, Blackwater T, Heberlein U, Kaun KR
bioRxiv. 2020 Feb 17:

Animals avoid predators and find the best food and mates by learning from the consequences of their behavior. However, reinforcers are not always uniquely appetitive or aversive but can have complex properties. Most intoxicating substances fall within this category; provoking aversive sensory and physiological reactions while simultaneously inducing overwhelming appetitive properties. Here we describe the subtle behavioral features associated with continued seeking for alcohol despite aversive consequences. We developed an automated runway apparatus to measure how Drosophila respond to consecutive exposures of a volatilized substance. Behavior within this Behavioral Expression of Ethanol Reinforcement Runway (BEER Run) demonstrated a defined shift from aversive to appetitive responses to volatilized ethanol. Behavioral metrics attained by combining computer vision and machine learning methods, reveal that a subset of 9 classified behaviors and component behavioral features associate with this shift. We propose this combination of 9 be

View Publication Page