Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lippincottschwartz Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3945 Publications

Showing 601-610 of 3945 results
08/04/17 | Best practices for managing large CryoEM facilities.
Alewijnse B, Ashton AW, Chambers MG, Chen S, Cheng A, Ebrahim M, Eng ET, Hagen WJ, Koster AJ, Lopez CS, Lukoyanova N, Ortega J, Renault L, Reyntjens S, Rice WJ, Scapin G, Schrijver R, Siebert A, Stagg SM, et al
Journal of Structural Biology. 2017-08-04;199(3):225-36. doi: 10.1016/j.jsb.2017.07.011

This paper provides an overview of the discussion and presentations from the Workshop on the Management of Large CryoEM Facilities held at the New York Structural Biology Center, New York, NY on February 6–7, 2017. A major objective of the workshop was to discuss best practices for managing cryoEM facilities. The discussions were largely focused on supporting single-particle methods for cryoEM and topics included: user access, assessing projects, workflow, sample handling, microscopy, data management and processing, and user training.

View Publication Page
Chklovskii Lab
06/01/12 | Betamax: towards optimal sampling strategies for high-throughput screens.
Grover D, Nunez-Iglesias J
Journal of Computational Biology: A Journal of Computational Molecular Cell Biology. 2012 Jun;19(6):776-84. doi: 10.1089/cmb.2012.0036

Sample size is a critical component in the design of any high-throughput genetic screening approach. Sample size determination from assumptions or limited data at the planning stages, though standard practice, may at times be unreliable because of the difficulty of a priori modeling of effect sizes and variance. Methods to update the sample size estimate during the course of the study could improve statistical power. In this article, we introduce an approach to estimate the power and update it continuously during the screen. We use this estimate to decide where to sample next to achieve maximum overall statistical power. Finally, in simulations, we demonstrate significant gains in study recall over the naive strategy of equal sample sizes while maintaining the same total number of samples.

View Publication Page
02/09/15 | Bidirectional NMDA receptor plasticity controls CA3 output and heterosynaptic metaplasticity.
Hunt DL, Puente N, Grandes P, Castillo PE
Nature Neuroscience. 2013 Aug;16(8):1049-59. doi: 10.1038/nn.3461

NMDA receptors (NMDARs) are classically known as coincidence detectors for the induction of long-term synaptic plasticity and have been implicated in hippocampal CA3 cell-dependent spatial memory functions that likely rely on dynamic cellular ensemble encoding of space. The unique functional properties of both NMDARs and mossy fiber projections to CA3 pyramidal cells place mossy fiber NMDARs in a prime position to influence CA3 ensemble dynamics. By mimicking presynaptic and postsynaptic activity patterns observed in vivo, we found a burst timing-dependent pattern of activity that triggered bidirectional long-term NMDAR plasticity at mossy fiber-CA3 synapses in rat hippocampal slices. This form of plasticity imparts bimodal control of mossy fiber-driven CA3 burst firing and spike temporal fidelity. Moreover, we found that mossy fiber NMDARs mediate heterosynaptic metaplasticity between mossy fiber and associational-commissural synapses. Thus, bidirectional NMDAR plasticity at mossy fiber-CA3 synapses could substantially contribute to the formation, storage and recall of CA3 cell assembly patterns.

View Publication Page
12/09/21 | Bidirectional synaptic plasticity rapidly modifies hippocampal representations.
Milstein AD, Li Y, Bittner KC, Grienberger C, Soltesz I, Magee JC, Romani S
eLife. 2021 Dec 09;10:. doi: 10.7554/eLife.73046

Learning requires neural adaptations thought to be mediated by activity-dependent synaptic plasticity. A relatively non-standard form of synaptic plasticity driven by dendritic calcium spikes, or plateau potentials, has been reported to underlie place field formation in rodent hippocampal CA1 neurons. Here we found that this behavioral timescale synaptic plasticity (BTSP) can also reshape existing place fields via bidirectional synaptic weight changes that depend on the temporal proximity of plateau potentials to pre-existing place fields. When evoked near an existing place field, plateau potentials induced less synaptic potentiation and more depression, suggesting BTSP might depend inversely on postsynaptic activation. However, manipulations of place cell membrane potential and computational modeling indicated that this anti-correlation actually results from a dependence on current synaptic weight such that weak inputs potentiate and strong inputs depress. A network model implementing this bidirectional synaptic learning rule suggested that BTSP enables population activity, rather than pairwise neuronal correlations, to drive neural adaptations to experience.

View Publication Page
Saalfeld LabSinger Lab
05/28/15 | BigDataViewer: visualization and processing for large image data sets.
Pietzsch T, Saalfeld S, Preibisch S, Tomancak P
Nature Methods. 2015 May 28;12(6):481-3. doi: 10.1038/nmeth.3392
06/01/23 | BigNeuron: a resource to benchmark and predict performance of algorithms for automated tracing of neurons in light microscopy datasets.
Manubens-Gil L, Zhou Z, Chen H, Ramanathan A, Liu X, Liu Y, Bria A, Gillette T, Ruan Z, Yang J, Radojević M, Zhao T, Cheng L, Qu L, Liu S, Bouchard KE, Gu L, Cai W, Ji S, Roysam B, Wang C, Yu H, Sironi A, Iascone DM, Zhou J, Bas E, Conde-Sousa E, Aguiar P, Li X, Li Y, Nanda S, Wang Y, Muresan L, Fua P, Ye B, He H, Staiger JF, Peter M, Cox DN, Simonneau M, Oberlaender M, Jefferis G, Ito K, Gonzalez-Bellido P, Kim J, Rubel E, Cline HT, Zeng H, Nern A, Chiang A, Yao J, Roskams J, Livesey R, Stevens J, Liu T, Dang C, Guo Y, Zhong N, Tourassi G, Hill S, Hawrylycz M, Koch C, Meijering E, Ascoli GA, Peng H
Nature Methods. 2023 Jun 01;20(6):. doi: 10.1038/s41592-023-01848-5

BigNeuron is an open community bench-testing platform with the goal of setting open standards for accurate and fast automatic neuron tracing. We gathered a diverse set of image volumes across several species that is representative of the data obtained in many neuroscience laboratories interested in neuron tracing. Here, we report generated gold standard manual annotations for a subset of the available imaging datasets and quantified tracing quality for 35 automatic tracing algorithms. The goal of generating such a hand-curated diverse dataset is to advance the development of tracing algorithms and enable generalizable benchmarking. Together with image quality features, we pooled the data in an interactive web application that enables users and developers to perform principal component analysis, t-distributed stochastic neighbor embedding, correlation and clustering, visualization of imaging and tracing data, and benchmarking of automatic tracing algorithms in user-defined data subsets. The image quality metrics explain most of the variance in the data, followed by neuromorphological features related to neuron size. We observed that diverse algorithms can provide complementary information to obtain accurate results and developed a method to iteratively combine methods and generate consensus reconstructions. The consensus trees obtained provide estimates of the neuron structure ground truth that typically outperform single algorithms in noisy datasets. However, specific algorithms may outperform the consensus tree strategy in specific imaging conditions. Finally, to aid users in predicting the most accurate automatic tracing results without manual annotations for comparison, we used support vector machine regression to predict reconstruction quality given an image volume and a set of automatic tracings.

View Publication Page
07/15/15 | BigNeuron: Large-scale 3D neuron reconstruction from optical microscopy images.
Peng H, Hawrylycz M, Roskams J, Hill S, Spruston N, Meijering E, Ascoli GA
Neuron. 2015 Jul 15;87:252-6. doi: 10.1016/j.neuron.2015.06.036

Understanding the structure of single neurons is critical for understanding how they function within neural circuits. BigNeuron is a new community effort that combines modern bioimaging informatics, recent leaps in labeling and microscopy, and the widely recognized need for openness and standardization to provide a community resource for automated reconstruction of dendritic and axonal morphology of single neurons.

Understanding the structure of single neurons is critical for understanding how they function within neural circuits. BigNeuron is a new community effort that combines modern bioimaging informatics, recent leaps in labeling and microscopy, and the widely recognized need for openness and standardization to provide a community resource for automated reconstruction of dendritic and axonal morphology of single neurons.

View Publication Page
09/01/19 | BigStitcher: reconstructing high-resolution image datasets of cleared and expanded samples.
Hörl D, Rojas Rusak F, Preusser F, Tillberg P, Randel N, Chhetri RK, Cardona A, Keller PJ, Harz H, Leonhardt H, Treier M, Preibisch S
Nature Methods. 2019 Sep;16(9):870-74. doi: 10.1038/s41592-019-0501-0

Light-sheet imaging of cleared and expanded samples creates terabyte-sized datasets that consist of many unaligned three-dimensional image tiles, which must be reconstructed before analysis. We developed the BigStitcher software to address this challenge. BigStitcher enables interactive visualization, fast and precise alignment, spatially resolved quality estimation, real-time fusion and deconvolution of dual-illumination, multitile, multiview datasets. The software also compensates for optical effects, thereby improving accuracy and enabling subsequent biological analysis.

View Publication Page
01/25/11 | Bile acid stimulates hepatocyte polarization through a cAMP-Epac-MEK-LKB1-AMPK pathway.
Fu D, Wakabayashi Y, Lippincott-Schwartz J, Arias IM
Proceedings of the National Academy of Sciences of the United States of America. 2011 Jan 25;108(4):1403-8. doi: 10.1073/pnas.1018376108

This study describes a unique function of taurocholate in bile canalicular formation involving signaling through a cAMP-Epac-MEK-Rap1-LKB1-AMPK pathway. In rat hepatocyte sandwich cultures, polarization was manifested by sequential progression of bile canaliculi from small structures to a fully branched network. Taurocholate accelerated canalicular network formation and concomitantly increased cAMP, which were prevented by adenyl cyclase inhibitor. The cAMP-dependent PKA inhibitor did not prevent the taurocholate effect. In contrast, activation of Epac, another cAMP downstream kinase, accelerated canalicular network formation similar to the effect of taurocholate. Inhibition of Epac downstream targets, Rap1 and MEK, blocked the taurocholate effect. Taurocholate rapidly activated MEK, LKB1, and AMPK, which were prevented by inhibition of adenyl cyclase or MEK. Our previous study showed that activated-LKB1 and AMPK participate in canalicular network formation. Linkage between bile acid synthesis, hepatocyte polarization, and regulation of energy metabolism is likely important in normal hepatocyte development and disease.

View Publication Page
12/12/17 | BIM for Facilities Management: Providing value at the Howard Hughes Medical Institute.
Wang G, Philip M, McKinley M
Journal of the National Institute of Building Sciences. 2017 Winter;5(3):10-14

While building information modeling (BIM) is widely embraced by the architectural, engineering and construction (AEC) industry, BIM adoption in facilities management (FM) is still relatively new and limited. BIM deliverables from design and construction generally do not fulfill FM needs unless they are clearly specified and carefully managed.

The Facilities Group responsible for the Janelia Research Campus of the Howard Hughes Medical Institute (HHMI) expects any BIM platform to provide value in operations and maintenance. Janelia’s BIM vision goes beyond transferring BIM data to computerized maintenance management software (CMMS) and integrated workplace management system (IWMS) platforms. Instead, Janelia creates and maintains FM-capable BIM, utilizes the models to solve operational challenges and improves safety and efficiency in various ways, including engineering analysis for heating, ventilation and air conditioning (HVAC), electrical and plumbing; building automation systems (BAS) analysis; operational impact analysis; and BIM-aided operation safety.

View Publication Page