Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lippincottschwartz Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

4106 Publications

Showing 991-1000 of 4106 results
01/18/19 | Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution.
Gao R, Asano SM, Upadhyayula S, Pisarev I, Milkie DE, Liu T, Singh V, Graves AR, Huynh GH, Zhao Y, Bogovic JA, Colonell J, Ott CM, Zugates CT, Tappan S, Rodriguez A, Mosaliganti KR, Sheu S, Pasolli HA, et al
Science (New York, N.Y.). 2019 Jan 18;363(6424):eaau8302. doi: 10.1126/science.aau8302

Optical and electron microscopy have made tremendous inroads toward understanding the complexity of the brain. However, optical microscopy offers insufficient resolution to reveal subcellular details, and electron microscopy lacks the throughput and molecular contrast to visualize specific molecular constituents over millimeter-scale or larger dimensions. We combined expansion microscopy and lattice light-sheet microscopy to image the nanoscale spatial relationships between proteins across the thickness of the mouse cortex or the entire Drosophila brain. These included synaptic proteins at dendritic spines, myelination along axons, and presynaptic densities at dopaminergic neurons in every fly brain region. The technology should enable statistically rich, large-scale studies of neural development, sexual dimorphism, degree of stereotypy, and structural correlations to behavior or neural activity, all with molecular contrast.

View Publication Page
02/13/25 | Cortical control of innate behavior from subcortical demonstration
Keller JA, Kwak IS, Stark AK, Pachitariu M, Branson K, Dudman JT
bioRxiv. 2025 Feb 13:. doi: 10.1101/2025.02.12.637930

Motor control in mammals is traditionally viewed as a hierarchy of descending spinal-targeting pathways, with frontal cortex at the top 1–3. Many redundant muscle patterns can solve a given task, and this high dimensionality allows flexibility but poses a problem for efficient learning 4. Although a feasible solution invokes subcortical innate motor patterns, or primitives, to reduce the dimensionality of the control problem, how cortex learns to utilize such primitives remains an open question 5–7. To address this, we studied cortical and subcortical interactions as head-fixed mice learned contextual control of innate hindlimb extension behavior. Naïve mice performed reactive extensions to turn off a cold air stimulus within seconds and, using predictive cues, learned to avoid the stimulus altogether in tens of trials. Optogenetic inhibition of large areas of rostral cortex completely prevented avoidance behavior, but did not impair hindlimb extensions in reaction to the cold air stimulus. Remarkably, mice covertly learned to avoid the cold stimulus even without any prior experience of successful, cortically-mediated avoidance. These findings support a dynamic, heterarchical model in which the dominant locus of control can change, on the order of seconds, between cortical and subcortical brain areas. We propose that cortex can leverage periods when subcortex predominates as demonstrations, to learn parameterized control of innate behavioral primitives.

View Publication Page
01/16/20 | Cortical pattern generation during dexterous movement is input-driven.
Sauerbrei BA, Guo J, Cohen JD, Mischiati M, Guo W, Kabra M, Verma N, Mensh B, Branson K, Hantman AW
Nature. 2020 Jan 16;577(7790):386-91. doi: 10.1038/s41586-019-1869-9

The motor cortex controls skilled arm movement by sending temporal patterns of activity to lower motor centres. Local cortical dynamics are thought to shape these patterns throughout movement execution. External inputs have been implicated in setting the initial state of the motor cortex, but they may also have a pattern-generating role. Here we dissect the contribution of local dynamics and inputs to cortical pattern generation during a prehension task in mice. Perturbing cortex to an aberrant state prevented movement initiation, but after the perturbation was released, cortex either bypassed the normal initial state and immediately generated the pattern that controls reaching or failed to generate this pattern. The difference in these two outcomes was probably a result of external inputs. We directly investigated the role of inputs by inactivating the thalamus; this perturbed cortical activity and disrupted limb kinematics at any stage of the movement. Activation of thalamocortical axon terminals at different frequencies disrupted cortical activity and arm movement in a graded manner. Simultaneous recordings revealed that both thalamic activity and the current state of cortex predicted changes in cortical activity. Thus, the pattern generator for dexterous arm movement is distributed across multiple, strongly interacting brain regions.

View Publication Page
12/22/10 | Cortical representations of olfactory input by trans-synaptic tracing.
Miyamichi K, Amat F, Moussavi F, Wang C, Wickersham I, Wall NR, Taniguchi H, Tasic B, Huang ZJ, He Z, Callaway EM, Horowitz MA, Luo L
Nature. 2010 Dec 22;472(7342):191-6. doi: 10.1038/nature09714

In the mouse, each class of olfactory receptor neurons expressing a given odorant receptor has convergent axonal projections to two specific glomeruli in the olfactory bulb, thereby creating an odour map. However, it is unclear how this map is represented in the olfactory cortex. Here we combine rabies-virus-dependent retrograde mono-trans-synaptic labelling with genetics to control the location, number and type of ’starter’ cortical neurons, from which we trace their presynaptic neurons. We find that individual cortical neurons receive input from multiple mitral cells representing broadly distributed glomeruli. Different cortical areas represent the olfactory bulb input differently. For example, the cortical amygdala preferentially receives dorsal olfactory bulb input, whereas the piriform cortex samples the whole olfactory bulb without obvious bias. These differences probably reflect different functions of these cortical areas in mediating innate odour preference or associative memory. The trans-synaptic labelling method described here should be widely applicable to mapping connections throughout the mouse nervous system.

View Publication Page
Svoboda Lab
10/14/04 | Cortical rewiring and information storage.
Chklovskii DB, Mel B, Svoboda K
Nature. 2004 Oct 14;431(7010):782-8

Current thinking about long-term memory in the cortex is focused on changes in the strengths of connections between neurons. But ongoing structural plasticity in the adult brain, including synapse formation/elimination and remodelling of axons and dendrites, suggests that memory could also depend on learning-induced changes in the cortical 'wiring diagram'. Given that the cortex is sparsely connected, wiring plasticity could provide a substantial boost in storage capacity, although at a cost of more elaborate biological machinery and slower learning.

View Publication Page
08/27/20 | Cortical RORβ is required for layer 4 transcriptional identity and barrel integrity.
Clark EA, Rutlin M, Capano L, Aviles S, Saadon JR, Taneja P, Zhang Q, Bullis JB, Lauer T, Myers E, Schulmann A, Forrest D, Nelson SB
eLife. 2020 Aug 27;9:. doi: 10.7554/eLife.52370

Retinoic Acid-Related Orphan Receptor Beta (RORβ) is a transcription factor (TF) and marker of layer 4 (L4) neurons, which are distinctive both in transcriptional identity and the ability to form aggregates such as barrels in rodent somatosensory cortex. However, the relationship between transcriptional identity and L4 cytoarchitecture is largely unknown. We find RORβ is required in the cortex for L4 aggregation into barrels and thalamocortical afferent (TCA) segregation. Interestingly, barrel organization also degrades with age in wildtype mice. Loss of RORβ delays excitatory input and disrupts gene expression and chromatin accessibility, with down-regulation of L4 and up-regulation of L5 genes, suggesting a disruption in cellular specification. Expression and binding site accessibility change for many other TFs, including closure of neurodevelopmental TF binding sites and increased expression and binding capacity of activity-regulated TFs. Lastly, a putative target of RORβ, , is down-regulated without RORβ, and knock-out alone disrupts TCA organization in adult barrels.

View Publication Page
Singer Lab
12/01/11 | Cotranscriptional effect of a premature termination codon revealed by live-cell imaging.
de Turris V, Nicholson P, Orozco RZ, Singer RH, Mühlemann O
RNA. 2011 Dec;17(12):2094-107. doi: 10.1261/rna.02918111

Aberrant mRNAs with premature translation termination codons (PTCs) are recognized and eliminated by the nonsense-mediated mRNA decay (NMD) pathway in eukaryotes. We employed a novel live-cell imaging approach to investigate the kinetics of mRNA synthesis and release at the transcription site of PTC-containing (PTC+) and PTC-free (PTC-) immunoglobulin-μ reporter genes. Fluorescence recovery after photobleaching (FRAP) and photoconversion analyses revealed that PTC+ transcripts are specifically retained at the transcription site. Remarkably, the retained PTC+ transcripts are mainly unspliced, and this RNA retention is dependent upon two important NMD factors, UPF1 and SMG6, since their depletion led to the release of the PTC+ transcripts. Finally, ChIP analysis showed a physical association of UPF1 and SMG6 with both the PTC+ and the PTC- reporter genes in vivo. Collectively, our data support a mechanism for regulation of PTC+ transcripts at the transcription site.

View Publication Page
05/12/24 | Coumarin as a general switching auxiliary to prepare photochromic and spontaneously blinking fluorophores
Jradi FM, English BP, Brown TA, Aaron J, Khuon S, Galbraith JA, Galbraith CG, Lavis LD
bioRxiv. 2024 May 12:. doi: 10.1101/2024.05.12.593749

Single-molecule localization microscopy (SMLM) uses activatable or switchable fluorophores to create non-diffraction limited maps of molecular location in biological samples. Despite the utility of this imaging technique, the portfolio of appropriate labels for SMLM remains limited. Here, we describe a general strategy for the construction of “glitter bomb” labels by simply combining rhodamine and coumarin dyes though an amide bond. Condensation of the ortho-carboxyl group on the pendant phenyl ring of rhodamine dyes with a 7-aminocoumarin yields photochromic or spontaneously blinking fluorophores depending on the parent rhodamine structure. We apply this strategy to prepare labels useful super-resolution experiments in fixed cells using different attachment techniques. This general glitter bomb strategy should lead to improved labels for SMLM, ultimately enabling the creation of detailed molecular maps in biological samples.

View Publication Page
03/07/25 | Courtship song differs between African and European populations of Drosophila melanogaster and involves a strong effect locus
Lollar MJ, Kim E, Stern DL, Pool JE
G3 Genes|Genomes|Genetics. 2025 Mar 07:. doi: 10.1093/g3journal/jkaf050

The courtship song of Drosophila melanogaster has long served as an excellent model system for studies of animal communication and differences in courtship song have been demonstrated among populations and between species. Here, we report that flies of African and European origin, which diverged approximately 13,000 years ago, show significant genetic differentiation in the use of slow versus fast pulse song. Using a combination of quantitative trait mapping and population genetic analysis we detected a single strong QTL underlying this trait and we identified candidate genes that may contribute to the evolution of this trait. Song trait variation between parental strains of our recombinant inbred panel enabled detection of genomic intervals associated with six additional song traits, some of which include known courtship-related genes. These findings improve the prospects for further genetic insights into the evolution of reproductive behavior and the biology underlying courtship song.

bioRxiv Preprint: https://www.biorxiv.org/content/early/2024/05/17/2024.05.14.594231

View Publication Page
06/06/06 | Cre recombinase-mediated restoration of nigrostriatal dopamine in dopamine-deficient mice reverses hypophagia and bradykinesia.
Hnasko TS, Perez FA, Scouras AD, Stoll EA, Gale SD, Luquet S, Phillips PE, Kremer EJ, Palmiter RD
Proceedings of the National Academy of Sciences of the United States of America. 2006 Jun 6;103(23):8858-63. doi: 10.1073/pnas.0603081103

A line of dopamine-deficient (DD) mice was generated to allow selective restoration of normal dopamine signaling to specific brain regions. These DD floxed stop (DDfs) mice have a nonfunctional Tyrosine hydroxylase (Th) gene because of insertion of a NeoR gene flanked by lox P sites targeted to the first intron of the Th gene. DDfs mice have trace brain dopamine content, severe hypoactivity, and aphagia, and they die without intervention. However, they can be maintained by daily treatment with l-3,4-dihydroxyphenylalanine (L-dopa). Injection of a canine adenovirus (CAV-2) engineered to express Cre recombinase into the central caudate putamen restores normal Th gene expression to the midbrain dopamine neurons that project there because CAV-2 efficiently transduces axon terminals and is retrogradely transported to neuronal cell bodies. Bilateral injection of Cre recombinase into the central caudate putamen restores feeding and normalizes locomotion in DDfs mice. Analysis of feeding behavior by using lickometer cages revealed that virally rescued DDfs mice are hyperphagic and have modified meal structures compared with control mice. The virally rescued DDfs mice are also hyperactive at night, have reduced motor coordination, and are thigmotactic compared with controls. These results highlight the critical role for dopamine signaling in the dorsal striatum for most dopamine-dependent behaviors but suggest that dopamine signaling in other brain regions is important to fine-tune these behaviors. This approach offers numerous advantages compared with previous models aimed at examining dopamine signaling in discrete dopaminergic circuits.

View Publication Page