Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
janelia7_blocks-janelia7_fake_breadcrumb | block
Reiser Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

54 Publications

Showing 31-40 of 54 results
12/06/21 | Non-preferred contrast responses in the Drosophila motion pathways reveal a receptive field structure that explains a common visual illusion.
Gruntman E, Reimers P, Romani S, Reiser MB
Current Biology. 2021 Dec 06;31(23):5286. doi: 10.1016/j.cub.2021.09.072

Diverse sensory systems, from audition to thermosensation, feature a separation of inputs into ON (increments) and OFF (decrements) signals. In the Drosophila visual system, separate ON and OFF pathways compute the direction of motion, yet anatomical and functional studies have identified some crosstalk between these channels. We used this well-studied circuit to ask whether the motion computation depends on ON-OFF pathway crosstalk. Using whole-cell electrophysiology, we recorded visual responses of T4 (ON) and T5 (OFF) cells, mapped their composite ON-OFF receptive fields, and found that they share a similar spatiotemporal structure. We fit a biophysical model to these receptive fields that accurately predicts directionally selective T4 and T5 responses to both ON and OFF moving stimuli. This model also provides a detailed mechanistic explanation for the directional preference inversion in response to the prominent reverse-phi illusion. Finally, we used the steering responses of tethered flying flies to validate the model's predicted effects of varying stimulus parameters on the behavioral turning inversion.

View Publication Page
01/09/19 | Nuclear transcriptomes of the seven neuronal cell types that constitute the mushroom bodies.
Shih MM, Davis FP, Henry GL, Dubnau J
G3 (Bethesda, Md.). 2019 Jan 09;9(1):81-94. doi: 10.1534/g3.118.200726

The insect mushroom body (MB) is a conserved brain structure that plays key roles in a diverse array of behaviors. The MB is the primary invertebrate model of neural circuits related to memory formation and storage, and its development, morphology, wiring, and function has been extensively studied. MBs consist of intrinsic Kenyon Cells that are divided into three major neuron classes (γ, α'/β' and α/β) and 7 cell subtypes (γd, γm, α'/β'ap, α'/β'm, α/βp, α/βs and α/βc) based on their birth order, morphology, and connectivity. These subtypes play distinct roles in memory processing, however the underlying transcriptional differences are unknown. Here, we used RNA sequencing (RNA-seq) to profile the nuclear transcriptomes of each MB neuronal cell subtypes. We identified 350 MB class- or subtype-specific genes, including the widely used α/β class marker and the α'/β' class marker Immunostaining corroborates the RNA-seq measurements at the protein level for several cases. Importantly, our data provide a full accounting of the neurotransmitter receptors, transporters, neurotransmitter biosynthetic enzymes, neuropeptides, and neuropeptide receptors expressed within each of these cell types. This high-quality, cell type-level transcriptome catalog for the MB provides a valuable resource for the fly neuroscience community.

View Publication Page
12/16/25 | Parallel neuronal ensembles control behavior across sensorimotor levels in <I>Drosophila<I>
Liessem S, Asinof SK, Nern A, Sumathipala M, Rogers E, Erginkaya M, Dallmann CJ, Card GM, Ache JM
bioRxiv. 2025 Dec 16:. doi: 10.64898/2025.12.13.693955

Nervous systems can process information in serial or in parallel, trading off efficiency for flexibility and speed. How these network architectures are implemented across sensorimotor pathways to control behavior is unclear. We investigate this tradeoff directly in Drosophila by comparing neuronal circuits underlying landing and takeoff, behaviors transforming similar visual cues to whole-body motor output. Using a whole-CNS connectome, electrophysiology, and behavioral analysis, we reconstruct the complete feedforward pathway for landing, including visual feature detectors, a dedicated ensemble of descending neurons (DNs), and a core premotor circuit in the nerve cord. Comparison to the takeoff pathway reveals that, despite encoding the same sensory feature and engaging similar muscle groups, neuronal circuits controlling the two behaviors are separated at every sensorimotor level. Extending this analysis to the complete DN population reveals a blueprint for descending motor control: DNs across the behavioral space utilized by the fly are organized as a set of parallel, loosely-overlapping ensembles that form a continuum from command-like control, with individual DNs determining behavioral output, to population coding, with multiple DNs controlling behavior synergistically. Distinct combinations of sensory feature detectors differentially recruit DN ensembles to enable flexible, context-dependent behavioral control.

View Publication Page
11/15/25 | Population Morphology Implies a Common Developmental Blueprint for Drosophila Motion Detectors
Drummond N, Zhao A, Borst A
bioRxiv. 2025 Nov 15:. doi: 10.1101/2025.11.15.688637

Quantitative analysis of neuron morphology is essential in order to develop our understanding of circuit organisation and development. The recent acquisition of whole-brain electron microscopy-based (EM) reconstructions of the Drosophila melanogaster nervous system now provide the resolution needed to examine morphology at scale. Utilising these data, together with new computational tools, we extract and analyse the dendrites of all T4 and T5 neurons within one hemisphere (n \~ 6000).T4 and T5 neurons are the first uniquely direction-selective neurons in the visual pathway, and are classified into four subtypes (a,b,c, and d). Each subtype encodes one of four cardinal motion directions (up, down, forwards, backwards). The dendrites of these neurons form in two distinct neuropils, the Medulla (T4) and the Lobula (T5), and are asymmetrically oriented in a direction inverse to the direction of motion which they encode. However, their densely overlapping and compact arbours has made rigorous morphological quantification challenging. The presence of differences beyond their characteristic orientation, both between T4 and T5, as well as within subtypes, has remained poorly understood.Our analysis reveals a high degree of structural similarity across both types and subtypes. Particularly, measures of geometry and graph topology show only minor variation, with no consistent separation between T4 and T5, or their subtypes.These results indicate that, despite forming in different neuropils, and serving distinct motion directions, T4 and T5 dendrites follow closely aligned morphological patterns. This suggests that their arborization may be governed by shared developmental constraints and mechanisms.

View Publication Page
02/01/12 | Real neuroscience in virtual worlds.
Dombeck DA, Reiser MB
Current Opinion in Neurobiology. 2012 Feb;22(1):3-10. doi: 10.1016/j.conb.2011.10.015

Virtual reality (VR) holds great promise as a tool to study the neural circuitry underlying animal behaviors. Here, we discuss the advantages of VR and the experimental paradigms and technologies that enable closed loop behavioral experiments. We review recent results from VR research in genetic model organisms where the potential combination of rich behaviors, genetic tools and cutting edge neural recording techniques are leading to breakthroughs in our understanding of the neural basis of behavior. We also discuss several key issues to consider when performing VR experiments and provide an outlook for the future of this exciting experimental toolkit.

View Publication Page
04/03/17 | Sensorimotor neuroscience: motor precision meets vision.
Longden KD, Huston SJ, Reiser MB
Current Biology : CB. 2017 Apr 03;27(7):R261-R263. doi: 10.1016/j.cub.2017.02.047

Visual motion sensing neurons in the fly also encode a range of behavior-related signals. These nonvisual inputs appear to be used to correct some of the challenges of visually guided locomotion.

View Publication Page
10/09/25 | Sexual dimorphism in the complete connectome of the <I>Drosophila</I> male central nervous system
Berg S, Beckett IR, Costa M, Schlegel P, Januszewski M, Marin EC, Nern A, Preibisch S, Qiu W, Takemura S, Fragniere AM, Champion AS, Adjavon D, Cook M, Gkantia M, Hayworth KJ, Huang GB, Katz WT, Kämpf F, Lu Z, Ordish C, Paterson T, Stürner T, Trautman ET, Whittle CR, Burnett LE, Hoeller J, Li F, Loesche F, Morris BJ, Pietzsch T, Pleijzier MW, Silva V, Yin Y, Ali I, Badalamente G, Bates AS, Bogovic J, Brooks P, Cachero S, Canino BS, Chaisrisawatsuk B, Clements J, Crowe A, de Haan Vicente I, Dempsey G, Donà E, dos Santos M, Dreher M, Dunne CR, Eichler K, Finley-May S, Flynn MA, Hameed I, Hopkins GP, Hubbard PM, Kiassat L, Kovalyak J, Lauchie SA, Leonard M, Lohff A, Longden KD, Maldonado CA, Mitletton M, Moitra I, Moon SS, Mooney C, Munnelly EJ, Okeoma N, Olbris DJ, Pai A, Patel B, Phillips EM, Plaza SM, Richards A, Rivas Salinas J, Roberts RJ, Rogers EM, Scott AL, Scuderi LA, Seenivasan P, Serratosa Capdevila L, Smith C, Svirskas R, Takemura S, Tastekin I, Thomson A, Umayam L, Walsh JJ, Whittome H, Xu CS, Yakal EA, Yang T, Zhao A, George R, Jain V, Jayaraman V, Korff W, Meissner GW, Romani S, Funke J, Knecht C, Saalfeld S, Scheffer LK, Waddell S, Card GM, Ribeiro C, Reiser MB, Hess HF, Rubin GM, Jefferis GS
bioRxiv. 2025 Oct 09:. doi: 10.1101/2025.10.09.680999

Sex differences in behaviour exist across the animal kingdom, typically under strong genetic regulation. In Drosophila, previous work has shown that fruitless and doublesex transcription factors identify neurons driving sexually dimorphic behaviour. However, the organisation of dimorphic neurons into functional circuits remains unclear.We now present the connectome of the entire Drosophila male central nervous system. This contains 166,691 neurons spanning the brain and ventral nerve cord, fully proofread and comprehensively annotated including fruitless and doublesex expression and 11,691 cell types. By comparison with a previous female brain connectome, we provide the first comprehensive description of the differences between male and female brains to synaptic resolution. Of 7,319 cross-matched cell types in the central brain, 114 are dimorphic with an additional 262 male- and 69 female-specific (totalling 4.8% of neurons in males and 2.4% in females).This resource enables analysis of full sensory-to-motor circuits underlying complex behaviours as well as the impact of dimorphic elements. Sex-specific and dimorphic neurons are concentrated in higher brain centres while the sensory and motor periphery are largely isomorphic. Within higher centres, male-specific connections are organised into hotspots defined by male-specific neurons or the presence of male-specific arbours on neurons that are otherwise similar between sexes. Numerous circuit switches reroute sensory information to form conserved, antagonistic circuits controlling opposing behaviours.

View Publication Page
01/08/18 | Simple integration of fast excitation and offset, delayed inhibition computes directional selectivity in Drosophila.
Gruntman E, Romani S, Reiser MB
Nature Neuroscience. 2018 Jan 08;21(2):250-7. doi: 10.1038/s41593-017-0046-4

A neuron that extracts directionally selective motion information from upstream signals lacking this selectivity must compare visual responses from spatially offset inputs. Distinguishing among prevailing algorithmic models for this computation requires measuring fast neuronal activity and inhibition. In the Drosophila melanogaster visual system, a fourth-order neuron-T4-is the first cell type in the ON pathway to exhibit directionally selective signals. Here we use in vivo whole-cell recordings of T4 to show that directional selectivity originates from simple integration of spatially offset fast excitatory and slow inhibitory inputs, resulting in a suppression of responses to the nonpreferred motion direction. We constructed a passive, conductance-based model of a T4 cell that accurately predicts the neuron's response to moving stimuli. These results connect the known circuit anatomy of the motion pathway to the algorithmic mechanism by which the direction of motion is computed.

View Publication Page
06/22/23 | Small-field visual projection neurons detect translational optic flow and support walking control
Mathew D. Isaacson , Jessica L. M. Eliason , Aljoscha Nern , Edward M. Rogers , Gus K. Lott , Tanya Tabachnik , William J. Rowell , Austin W. Edwards , Wyatt L. Korff , Gerald M. Rubin , Kristin Branson , Michael B. Reiser
bioRxiv. 2023 Jun 22:. doi: 10.1101/2023.06.21.546024

Animals rely on visual motion for navigating the world, and research in flies has clarified how neural circuits extract information from moving visual scenes. However, the major pathways connecting these patterns of optic flow to behavior remain poorly understood. Using a high-throughput quantitative assay of visually guided behaviors and genetic neuronal silencing, we discovered a region in Drosophila’s protocerebrum critical for visual motion following. We used neuronal silencing, calcium imaging, and optogenetics to identify a single cell type, LPC1, that innervates this region, detects translational optic flow, and plays a key role in regulating forward walking. Moreover, the population of LPC1s can estimate the travelling direction, such as when gaze direction diverges from body heading. By linking specific cell types and their visual computations to specific behaviors, our findings establish a foundation for understanding how the nervous system uses vision to guide navigation.

View Publication Page
11/18/20 | Spatial readout of visual looming in the central brain of Drosophila.
Morimoto MM, Nern A, Zhao A, Rogers EM, Wong A, Isaacson MD, Bock D, Rubin GM, Reiser MB
eLife. 2020 Nov 18;9:. doi: 10.7554/eLife.57685

Visual systems can exploit spatial correlations in the visual scene by using retinotopy. However, retinotopy is often lost, such as when visual pathways are integrated with other sensory modalities. How is spatial information processed outside of strictly visual brain areas? Here, we focused on visual looming responsive LC6 cells in , a population whose dendrites collectively cover the visual field, but whose axons form a single glomerulus-a structure without obvious retinotopic organization-in the central brain. We identified multiple cell types downstream of LC6 in the glomerulus and found that they more strongly respond to looming in different portions of the visual field, unexpectedly preserving spatial information. Through EM reconstruction of all LC6 synaptic inputs to the glomerulus, we found that LC6 and downstream cell types form circuits within the glomerulus that enable spatial readout of visual features and contralateral suppression-mechanisms that transform visual information for behavioral control.

View Publication Page