Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
More in this page
janelia7_blocks-janelia7_fake_breadcrumb | block
Romani Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

44 Publications

Showing 11-20 of 44 results
04/17/14 | Continuous attractor network model for conjunctive position-by-velocity tuning of grid cells.
Si B, Romani S, Tsodyks M
PLoS Computational Biology. 2014 Apr 17;10(4):e1003558. doi: 10.1371/journal.pcbi.1003558

The spatial responses of many of the cells recorded in layer II of rodent medial entorhinal cortex (MEC) show a triangular grid pattern, which appears to provide an accurate population code for animal spatial position. In layer III, V and VI of the rat MEC, grid cells are also selective to head-direction and are modulated by the speed of the animal. Several putative mechanisms of grid-like maps were proposed, including attractor network dynamics, interactions with theta oscillations or single-unit mechanisms such as firing rate adaptation. In this paper, we present a new attractor network model that accounts for the conjunctive position-by-velocity selectivity of grid cells. Our network model is able to perform robust path integration even when the recurrent connections are subject to random perturbations.

View Publication Page
08/05/10 | Continuous attractors with morphed/correlated maps.
Romani S, Tsodyks M
PLoS Computational Biology. 2010 Aug 5;6(8):e1000869. doi: 10.1371/journal.pcbi.1000869

Continuous attractor networks are used to model the storage and representation of analog quantities, such as position of a visual stimulus. The storage of multiple continuous attractors in the same network has previously been studied in the context of self-position coding. Several uncorrelated maps of environments are stored in the synaptic connections, and a position in a given environment is represented by a localized pattern of neural activity in the corresponding map, driven by a spatially tuned input. Here we analyze networks storing a pair of correlated maps, or a morph sequence between two uncorrelated maps. We find a novel state in which the network activity is simultaneously localized in both maps. In this state, a fixed cue presented to the network does not determine uniquely the location of the bump, i.e. the response is unreliable, with neurons not always responding when their preferred input is present. When the tuned input varies smoothly in time, the neuronal responses become reliable and selective for the environment: the subset of neurons responsive to a moving input in one map changes almost completely in the other map. This form of remapping is a non-trivial transformation between the tuned input to the network and the resulting tuning curves of the neurons. The new state of the network could be related to the formation of direction selectivity in one-dimensional environments and hippocampal remapping. The applicability of the model is not confined to self-position representations; we show an instance of the network solving a simple delayed discrimination task.

View Publication Page
Romani LabSvoboda Lab
02/06/19 | Discrete attractor dynamics underlies persistent activity in the frontal cortex.
Inagaki HK, Fontolan L, Romani S, Svoboda K
Nature. 2019 Feb 06;566(7743):212-7. doi: 10.1038/s41586-019-0919-7

Short-term memories link events separated in time, such as past sensation and future actions. Short-term memories are correlated with slow neural dynamics, including selective persistent activity, which can be maintained over seconds. In a delayed response task that requires short-term memory, neurons in the mouse anterior lateral motor cortex (ALM) show persistent activity that instructs future actions. To determine the principles that underlie this persistent activity, here we combined intracellular and extracellular electrophysiology with optogenetic perturbations and network modelling. We show that during the delay epoch, the activity of ALM neurons moved towards discrete end points that correspond to specific movement directions. These end points were robust to transient shifts in ALM activity caused by optogenetic perturbations. Perturbations occasionally switched the population dynamics to the other end point, followed by incorrect actions. Our results show that discrete attractor dynamics underlie short-term memory related to motor planning.

View Publication Page
01/15/15 | Effects of long-term representations on free recall of unrelated words.
Katkov M, Romani S, Tsodyks M
Learning & Memory. 2015 Jan 15;22(2):101-8. doi: 10.1101/lm.035238.114

Human memory stores vast amounts of information. Yet recalling this information is often challenging when specific cues are lacking. Here we consider an associative model of retrieval where each recalled item triggers the recall of the next item based on the similarity between their long-term neuronal representations. The model predicts that different items stored in memory have different probability to be recalled depending on the size of their representation. Moreover, items with high recall probability tend to be recalled earlier and suppress other items. We performed an analysis of a large data set on free recall and found a highly specific pattern of statistical dependencies predicted by the model, in particular negative correlations between the number of words recalled and their average recall probability. Taken together, experimental and modeling results presented here reveal complex interactions between memory items during recall that severely constrain recall capacity.

View Publication Page
Romani LabFitzgerald Lab
11/01/24 | From the fly connectome to exact ring attractor dynamics
Biswas T, Stanoev A, Romani S, Fitzgerald JE
bioRxiv. 2024 Nov 01:. doi: 10.1101/2024.11.01.621596

A cognitive compass enabling spatial navigation requires neural representation of heading direction (HD), yet the neural circuit architecture enabling this representation remains unclear. While various network models have been proposed to explain HD systems, these models rely on simplified circuit architectures that are incompatible with empirical observations from connectomes. Here we construct a novel network model for the fruit fly HD system that satisfies both connectome-derived architectural constraints and the functional requirement of continuous heading representation. We characterize an ensemble of continuous attractor networks where compass neurons providing local mutual excitation are coupled to inhibitory neurons. We discover a new mechanism where continuous heading representation emerges from combining symmetric and anti-symmetric activity patterns. Our analysis reveals three distinct realizations of these networks that all match observed compass neuron activity but differ in their predictions for inhibitory neuron activation patterns. Further, we found that deviations from these realizations can be compensated by cell-type-specific rescaling of synaptic weights, which could be potentially achieved through neuromodulation. This framework can be extended to incorporate the complete fly central complex connectome and could reveal principles of neural circuits representing other continuous quantities, such as spatial location, across insects and vertebrates.

View Publication Page
01/10/20 | Fundamental law of memory recall.
Naim M, Katkov M, Romani S, Tsodyks M
Physical Review Letters. 2020 Jan 10;124(1):018101. doi: 10.1103/PhysRevLett.124.018101

Human memory appears to be fragile and unpredictable. Free recall of random lists of words is a standard paradigm used to probe episodic memory. We proposed an associative search process that can be reduced to a deterministic walk on random graphs defined by the structure of memory representations. The corresponding graph model can be solved analytically, resulting in a novel parameter-free prediction for the average number of memory items recalled (R) out of M items in memory: R=sqrt[3πM/2]. This prediction was verified with a specially designed experimental protocol combining large-scale crowd-sourced free recall and recognition experiments with randomly assembled lists of words or common facts. Our results show that human memory can be described by universal laws derived from first principles.

View Publication Page
11/20/19 | Generation of stable heading representations in diverse visual scenes.
Kim SS, Hermundstad AM, Romani S, Abbott LF, Jayaraman V
Nature. 2019 Nov 20;576(7785):126-31. doi: 10.1038/s41586-019-1767-1

Many animals rely on an internal heading representation when navigating in varied environments. How this representation is linked to the sensory cues that define different surroundings is unclear. In the fly brain, heading is represented by 'compass' neurons that innervate a ring-shaped structure known as the ellipsoid body. Each compass neuron receives inputs from 'ring' neurons that are selective for particular visual features; this combination provides an ideal substrate for the extraction of directional information from a visual scene. Here we combine two-photon calcium imaging and optogenetics in tethered flying flies with circuit modelling, and show how the correlated activity of compass and visual neurons drives plasticity, which flexibly transforms two-dimensional visual cues into a stable heading representation. We also describe how this plasticity enables the fly to convert a partial heading representation, established from orienting within part of a novel setting, into a complete heading representation. Our results provide mechanistic insight into the memory-related computations that are essential for flexible navigation in varied surroundings.

View Publication Page
05/30/16 | Hippocampal global remapping for different sensory modalities in flying bats.
Geva-Sagiv M, Romani S, Las L, Ulanovsky N
Nature Neuroscience. 2016 May 30;19(7):952-8. doi: 10.1038/nn.4310

Hippocampal place cells encode the animal's spatial position. However, it is unknown how different long-range sensory systems affect spatial representations. Here we alternated usage of vision and echolocation in Egyptian fruit bats while recording from single neurons in hippocampal areas CA1 and subiculum. Bats flew back and forth along a linear flight track, employing echolocation in darkness or vision in light. Hippocampal representations remapped between vision and echolocation via two kinds of remapping: subiculum neurons turned on or off, while CA1 neurons shifted their place fields. Interneurons also exhibited strong remapping. Finally, hippocampal place fields were sharper under vision than echolocation, matching the superior sensory resolution of vision over echolocation. Simulating several theoretical models of place-cells suggested that combining sensory information and path integration best explains the experimental sharpening data. In summary, here we show sensory-based global remapping in a mammal, suggesting that the hippocampus does not contain an abstract spatial map but rather a 'cognitive atlas', with multiple maps for different sensory modalities.

View Publication Page
Romani LabMagee Lab
01/23/17 | Inhibitory suppression of heterogeneously tuned excitation enhances spatial coding in CA1 place cells.
Grienberger C, Milstein AD, Bittner KC, Romani S, Magee JC
Nature Neuroscience. 2017 Jan 23;20(3):417-26. doi: 10.1038/nn.4486

Place cells in the CA1 region of the hippocampus express location-specific firing despite receiving a steady barrage of heterogeneously tuned excitatory inputs that should compromise output dynamic range and timing. We examined the role of synaptic inhibition in countering the deleterious effects of off-target excitation. Intracellular recordings in behaving mice demonstrate that bimodal excitation drives place cells, while unimodal excitation drives weaker or no spatial tuning in interneurons. Optogenetic hyperpolarization of interneurons had spatially uniform effects on place cell membrane potential dynamics, substantially reducing spatial selectivity. These data and a computational model suggest that spatially uniform inhibitory conductance enhances rate coding in place cells by suppressing out-of-field excitation and by limiting dendritic amplification. Similarly, we observed that inhibitory suppression of phasic noise generated by out-of-field excitation enhances temporal coding by expanding the range of theta phase precession. Thus, spatially uniform inhibition allows proficient and flexible coding in hippocampal CA1 by suppressing heterogeneously tuned excitation.

View Publication Page
03/01/11 | Intracellular dynamics of virtual place cells.
Romani S, Sejnowski TJ, Tsodyks M
Neural Computation. 2011 Mar;23(3):651-5. doi: 10.1162/NECO_a_00087

The pattern of spikes recorded from place cells in the rodent hippocampus is strongly modulated by both the spatial location in the environment and the theta rhythm. The phases of the spikes in the theta cycle advance during movement through the place field. Recently intracellular recordings from hippocampal neurons (Harvey, Collman, Dombeck, & Tank, 2009 ) showed an increase in the amplitude of membrane potential oscillations inside the place field, which was interpreted as evidence that an intracellular mechanism caused phase precession. Here we show that an existing network model of the hippocampus (Tsodyks, Skaggs, Sejnowski, & McNaughton, 1996 ) can equally reproduce this and other aspects of the intracellular recordings, which suggests that new experiments are needed to distinguish the contributions of intracellular and network mechanisms to phase precession.

View Publication Page