Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
janelia7_blocks-janelia7_fake_breadcrumb | block
Saalfeld Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

62 Publications

Showing 41-50 of 62 results
02/01/23 | Local shape descriptors for neuron segmentation.
Sheridan A, Nguyen TM, Deb D, Lee WA, Saalfeld S, Turaga SC, Manor U, Funke J
Nature Methods. 2023 Feb 01;20(2):295-303. doi: 10.1038/s41592-022-01711-z

We present an auxiliary learning task for the problem of neuron segmentation in electron microscopy volumes. The auxiliary task consists of the prediction of local shape descriptors (LSDs), which we combine with conventional voxel-wise direct neighbor affinities for neuron boundary detection. The shape descriptors capture local statistics about the neuron to be segmented, such as diameter, elongation, and direction. On a study comparing several existing methods across various specimen, imaging techniques, and resolutions, auxiliary learning of LSDs consistently increases segmentation accuracy of affinity-based methods over a range of metrics. Furthermore, the addition of LSDs promotes affinity-based segmentation methods to be on par with the current state of the art for neuron segmentation (flood-filling networks), while being two orders of magnitudes more efficient-a critical requirement for the processing of future petabyte-sized datasets.

View Publication Page
09/01/23 | OME-Zarr: a cloud-optimized bioimaging file format with international community support.
Josh Moore , Daniela Basurto-Lozada , Sébastien Besson , John Bogovic , Eva M. Brown , Jean-Marie Burel , Gustavo de Medeiros , Erin E. Diel , David Gault , Satrajit S. Ghosh , Ilan Gold , Yaroslav O. Halchenko , Matthew Hartley , Dave Horsfall , Mark S. Keller , Mark Kittisopikul , Gabor Kovacs , Aybüke Küpcü Yoldaş , Albane le Tournoulx de la Villegeorges , Tong Li , Prisca Liberali , Melissa Linkert , Dominik Lindner , Joel Lüthi , Jeremy Maitin-Shepard , Trevor Manz , Matthew McCormick , Khaled Mohamed , William Moore , Bugra Özdemir , Constantin Pape , Lucas Pelkmans , Martin Prete , Tobias Pietzsch , Stephan Preibisch , Norman Rzepka , David R. Stirling , Jonathan Striebel , Christian Tischer , Daniel Toloudis , Petr Walczysko , Alan M. Watson , Frances Wong , Kevin A. Yamauchi , Omer Bayraktar , Muzlifah Haniffa , Stephan Saalfeld , Jason R. Swedlow
Histochemistry and Cell Biology. 2023 Feb 25;160(3):223-251. doi: 10.1007/s00418-023-02209-1

A growing community is constructing a next-generation file format (NGFF) for bioimaging to overcome problems of scalability and heterogeneity. Organized by the Open Microscopy Environment (OME), individuals and institutes across diverse modalities facing these problems have designed a format specification process (OME-NGFF) to address these needs. This paper brings together a wide range of those community members to describe the format itself – OME-Zarr – along with tools and data resources available today to increase FAIR access and remove barriers in the scientific process. The current momentum offers an opportunity to unify a key component of the bioimaging domain — the file format that underlies so many personal, institutional, and global data management and analysis tasks.

View Publication Page
01/23/23 | Periodic ER-plasma membrane junctions support long-range Ca signal integration in dendrites.
Benedetti L, Fan R, Weigel AV, Moore AS, Houlihan PR, Kittisopikul M, Park G, Petruncio A, Hubbard PM, Pang S, Xu CS, Hess HF, Saalfeld S, Rangaraju V, Clapham DE, De Camilli P, Ryan TA, Lippincott-Schwartz J
Cell. 01/2025;188(2):484-500.e22. doi: 10.1016/j.cell.2024.11.029

Neuronal dendrites must relay synaptic inputs over long distances, but the mechanisms by which activity-evoked intracellular signals propagate over macroscopic distances remain unclear. Here, we discovered a system of periodically arranged endoplasmic reticulum-plasma membrane (ER-PM) junctions tiling the plasma membrane of dendrites at ∼1 μm intervals, interlinked by a meshwork of ER tubules patterned in a ladder-like array. Populated with Junctophilin-linked plasma membrane voltage-gated Ca channels and ER Ca-release channels (ryanodine receptors), ER-PM junctions are hubs for ER-PM crosstalk, fine-tuning of Ca homeostasis, and local activation of the Ca/calmodulin-dependent protein kinase II. Local spine stimulation activates the Ca modulatory machinery, facilitating signal transmission and ryanodine-receptor-dependent Ca release at ER-PM junctions over 20 μm away. Thus, interconnected ER-PM junctions support signal propagation and Ca release from the spine-adjacent ER. The capacity of this subcellular architecture to modify both local and distant membrane-proximal biochemistry potentially contributes to dendritic computations.

View Publication Page
03/27/22 | Petascale pipeline for precise alignment of images from serial section electron microscopy.
Sergiy Popovych , Thomas Macrina , Nico Kemnitz , Manuel Castro , Barak Nehoran , Zhen Jia , J. Alexander Bae , Eric Mitchell , Shang Mu , Eric T. Trautman , Stephan Saalfeld , Kai Li , Sebastian Seung
bioRxiv. 2022 Mar 27:. doi: 10.1101/2022.03.25.485816

The reconstruction of neural circuits from serial section electron microscopy (ssEM) images is being accelerated by automatic image segmentation methods. Segmentation accuracy is often limited by the preceding step of aligning 2D section images to create a 3D image stack. Precise and robust alignment in the presence of image artifacts is challenging, especially as datasets are attaining the petascale. We present a computational pipeline for aligning ssEM images with several key elements. Self-supervised convolutional nets are trained via metric learning to encode and align image pairs, and they are used to initialize iterative fine-tuning of alignment. A procedure called vector voting increases robustness to image artifacts or missing image data. For speedup the series is divided into blocks that are distributed to computational workers for alignment. The blocks are aligned to each other by composing transformations with decay, which achieves a global alignment without resorting to a time-consuming global optimization. We apply our pipeline to a whole fly brain dataset, and show improved accuracy relative to prior state of the art. We also demonstrate that our pipeline scales to a cubic millimeter of mouse visual cortex. Our pipeline is publicly available through two open source Python packages.

View Publication Page
01/04/24 | Petascale pipeline for precise alignment of images from serial section electron microscopy.
Popovych S, Macrina T, Kemnitz N, Castro M, Nehoran B, Jia Z, Bae JA, Mitchell E, Mu S, Trautman ET, Saalfeld S, Li K, Seung HS
Nature Communications. 2024 Jan 04;15(1):289. doi: 10.1038/s41467-023-44354-0

The reconstruction of neural circuits from serial section electron microscopy (ssEM) images is being accelerated by automatic image segmentation methods. Segmentation accuracy is often limited by the preceding step of aligning 2D section images to create a 3D image stack. Precise and robust alignment in the presence of image artifacts is challenging, especially as datasets are attaining the petascale. We present a computational pipeline for aligning ssEM images with several key elements. Self-supervised convolutional nets are trained via metric learning to encode and align image pairs, and they are used to initialize iterative fine-tuning of alignment. A procedure called vector voting increases robustness to image artifacts or missing image data. For speedup the series is divided into blocks that are distributed to computational workers for alignment. The blocks are aligned to each other by composing transformations with decay, which achieves a global alignment without resorting to a time-consuming global optimization. We apply our pipeline to a whole fly brain dataset, and show improved accuracy relative to prior state of the art. We also demonstrate that our pipeline scales to a cubic millimeter of mouse visual cortex. Our pipeline is publicly available through two open source Python packages.

View Publication Page
11/25/14 | Post-acquisition image based compensation for thickness variation in microscopy section series.
Hanslovsky P, Bogovic JA, Saalfeld S
IEEE International Symposium on Biomedical Imaging. 2014 Nov 25:507-11

Serial section Microscopy is an established method for volumetric anatomy reconstruction. Section series imaged with Electron Microscopy are currently vital for the reconstruction of the synaptic connectivity of entire animal brains such as that of Drosophila melanogaster. The process of removing ultrathin layers from a solid block containing the specimen, however, is a fragile procedure and has limited precision with respect to section thickness. We have developed a method to estimate the relative z-position of each individual section as a function of signal change across the section series. First experiments show promising results on both serial section Transmission Electron Microscopy (ssTEM) data and Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) series. We made our solution available as Open Source plugins for the TrakEM2 software and the ImageJ distribution Fiji.

View Publication Page
07/01/15 | Post-acquisition image based compensation for thickness variation in microscopy section series.
Hanslovsky P, Bogovic J, Saalfeld S
IEEE 12th International Symposium on Biomedical Imaging (ISBI). 2015 Jul 01:. doi: 10.1109/ISBI.2015.7163922

Serial section Microscopy is an established method for volumetric anatomy reconstruction. Section series imaged with Electron Microscopy are currently vital for the reconstruction of the synaptic connectivity of entire animal brains such as that of Drosophila melanogaster. The process of removing ultrathin layers from a solid block containing the specimen, however, is a fragile procedure and has limited precision with respect to section thickness. We have developed a method to estimate the relative z-position of each individual section as a function of signal change across the section series. First experiments show promising results on both serial section Transmission Electron Microscopy (ssTEM) data and Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) series. We made our solution available as Open Source plugins for the TrakEM2 software and the ImageJ distribution Fiji.

View Publication Page
04/05/17 | PreMosa: Extracting 2D surfaces from 3D microscopy mosaics.
Blasse C, Saalfeld S, Etournay R, Sagner A, Eaton S, Myers EW
Bioinformatics (Oxford, England). 2017 Apr 05;33(16):2563-9. doi: 10.1093/bioinformatics/btx195

Motivation: A significant focus of biological research is to understand the development, organization and function of tissues. A particularly productive area of study is on single layer epithelial tissues in which the adherence junctions of cells form a 2D manifold that is fluorescently labeled. Given the size of the tissue, a microscope must collect a mosaic of overlapping 3D stacks encompassing the stained surface. Downstream interpretation is greatly simplified by preprocessing such a dataset as follows: (a) extracting and mapping the stained manifold in each stack into a single 2D projection plane, (b) correcting uneven illumination artifacts, (c) stitching the mosaic planes into a single, large 2D image, and (d) adjusting the contrast.

Results: We have developed PreMosa, an efficient, fully automatic pipeline to perform the four preprocessing tasks above resulting in a single 2D image of the stained manifold across which contrast is optimized and illumination is even. Notable features are as follows. First, the 2D projection step employs a specially developed algorithm that actually finds the manifold in the stack based on maximizing contrast, intensity and smoothness. Second, the projection step comes first, implying all subsequent tasks are more rapidly solved in 2D. And last, the mosaic melding employs an algorithm that globally adjusts contrasts amongst the 2D tiles so as to produce a seamless, high-contrast image. We conclude with an evaluation using ground-truth datasets and present results on datasets from Drosophila melanogaster wings and Schmidtae mediterranea ciliary components.

Availability: PreMosa is available under https://cblasse.github.io/premosa.

Contact: blasse@mpi-cbg.de, myers@mpi-cbg.de.

View Publication Page
03/18/16 | Quantitative neuroanatomy for connectomics in Drosophila.
Schneider-Mizell CM, Gerhard S, Longair M, Kazimiers T, Li F, Zwart M, Champion A, Midgley F, Fetter RD, Saalfeld S, Cardona A
eLife. 2016 Mar 18:e12059. doi: 10.7554/eLife.12059

Neuronal circuit mapping using electron microscopy demands laborious proofreading or reconciliation of multiple independent reconstructions. Here, we describe new methods to apply quantitative arbor and network context to iteratively proofread and reconstruct circuits and create anatomically enriched wiring diagrams. We measured the morphological underpinnings of connectivity in new and existing reconstructions of Drosophila sensorimotor (larva) and visual (adult) systems. Synaptic inputs were preferentially located on numerous small, microtubule-free 'twigs' which branch off a single microtubule-containing 'backbone'. Omission of individual twigs accounted for 96% of errors. However, the synapses of highly connected neurons were distributed across multiple twigs. Thus, the robustness of a strong connection to detailed twig anatomy was associated with robustness to reconstruction error. By comparing iterative reconstruction to the consensus of multiple reconstructions, we show that our method overcomes the need for redundant effort through the discovery and application of relationships between cellular neuroanatomy and synaptic connectivity.

View Publication Page
10/26/22 | Rapid reconstruction of neural circuits using tissue expansion and lattice light sheet microscopy
Joshua L. Lillvis , Hideo Otsuna , Xiaoyu Ding , Igor Pisarev , Takashi Kawase , Jennifer Colonell , Konrad Rokicki , Cristian Goina , Ruixuan Gao , Amy Hu , Kaiyu Wang , John Bogovic , Daniel E. Milkie , Edward S. Boyden , Stephan Saalfeld , Paul W. Tillberg , Barry J. Dickson
eLife. 2022 Oct 26:. doi: 10.7554/eLife.81248

Electron microscopy (EM) allows for the reconstruction of dense neuronal connectomes but suffers from low throughput, limiting its application to small numbers of reference specimens. We developed a protocol and analysis pipeline using tissue expansion and lattice light-sheet microscopy (ExLLSM) to rapidly reconstruct selected circuits across many samples with single synapse resolution and molecular contrast. We validate this approach in Drosophila, demonstrating that it yields synaptic counts similar to those obtained by EM, can be used to compare counts across sex and experience, and to correlate structural connectivity with functional connectivity. This approach fills a critical methodological gap in studying variability in the structure and function of neural circuits across individuals within and between species.

View Publication Page