Filter
Associated Lab
- Aso Lab (1) Apply Aso Lab filter
- Betzig Lab (2) Apply Betzig Lab filter
- Bock Lab (1) Apply Bock Lab filter
- Card Lab (1) Apply Card Lab filter
- Cardona Lab (9) Apply Cardona Lab filter
- Clapham Lab (2) Apply Clapham Lab filter
- Fetter Lab (3) Apply Fetter Lab filter
- Funke Lab (10) Apply Funke Lab filter
- Harris Lab (3) Apply Harris Lab filter
- Hess Lab (9) Apply Hess Lab filter
- Jayaraman Lab (1) Apply Jayaraman Lab filter
- Lippincott-Schwartz Lab (4) Apply Lippincott-Schwartz Lab filter
- Rubin Lab (4) Apply Rubin Lab filter
- Saalfeld Lab (62) Apply Saalfeld Lab filter
- Scheffer Lab (2) Apply Scheffer Lab filter
- Singer Lab (1) Apply Singer Lab filter
- Sternson Lab (2) Apply Sternson Lab filter
- Svoboda Lab (2) Apply Svoboda Lab filter
- Tillberg Lab (3) Apply Tillberg Lab filter
- Turaga Lab (3) Apply Turaga Lab filter
Associated Project Team
Publication Date
- 2025 (2) Apply 2025 filter
- 2024 (4) Apply 2024 filter
- 2023 (6) Apply 2023 filter
- 2022 (6) Apply 2022 filter
- 2021 (4) Apply 2021 filter
- 2020 (2) Apply 2020 filter
- 2019 (3) Apply 2019 filter
- 2018 (5) Apply 2018 filter
- 2017 (4) Apply 2017 filter
- 2016 (3) Apply 2016 filter
- 2015 (4) Apply 2015 filter
- 2014 (1) Apply 2014 filter
- 2012 (7) Apply 2012 filter
- 2010 (5) Apply 2010 filter
- 2009 (4) Apply 2009 filter
- 2008 (2) Apply 2008 filter
Type of Publication
62 Publications
Showing 61-62 of 62 resultsHigh-resolution serial-section electron microscopy (ssEM) makes it possible to investigate the dense meshwork of axons, dendrites, and synapses that form neuronal circuits. However, the imaging scale required to comprehensively reconstruct these structures is more than ten orders of magnitude smaller than the spatial extents occupied by networks of interconnected neurons, some of which span nearly the entire brain. Difficulties in generating and handling data for large volumes at nanoscale resolution have thus restricted vertebrate studies to fragments of circuits. These efforts were recently transformed by advances in computing, sample handling, and imaging techniques, but high-resolution examination of entire brains remains a challenge. Here, we present ssEM data for the complete brain of a larval zebrafish (Danio rerio) at 5.5 days post-fertilization. Our approach utilizes multiple rounds of targeted imaging at different scales to reduce acquisition time and data management requirements. The resulting dataset can be analysed to reconstruct neuronal processes, permitting us to survey all myelinated axons (the projectome). These reconstructions enable precise investigations of neuronal morphology, which reveal remarkable bilateral symmetry in myelinated reticulospinal and lateral line afferent axons. We further set the stage for whole-brain structure-function comparisons by co-registering functional reference atlases and in vivo two-photon fluorescence microscopy data from the same specimen. All obtained images and reconstructions are provided as an open-access resource.
Cells contain hundreds of organelles and macromolecular assemblies. Obtaining a complete understanding of their intricate organization requires the nanometre-level, three-dimensional reconstruction of whole cells, which is only feasible with robust and scalable automatic methods. Here, to support the development of such methods, we annotated up to 35 different cellular organelle classes-ranging from endoplasmic reticulum to microtubules to ribosomes-in diverse sample volumes from multiple cell types imaged at a near-isotropic resolution of 4 nm per voxel with focused ion beam scanning electron microscopy (FIB-SEM). We trained deep learning architectures to segment these structures in 4 nm and 8 nm per voxel FIB-SEM volumes, validated their performance and showed that automatic reconstructions can be used to directly quantify previously inaccessible metrics including spatial interactions between cellular components. We also show that such reconstructions can be used to automatically register light and electron microscopy images for correlative studies. We have created an open data and open-source web repository, 'OpenOrganelle', to share the data, computer code and trained models, which will enable scientists everywhere to query and further improve automatic reconstruction of these datasets.