Filter
Associated Lab
- Ahrens Lab (4) Apply Ahrens Lab filter
- Betzig Lab (1) Apply Betzig Lab filter
- Beyene Lab (1) Apply Beyene Lab filter
- Druckmann Lab (1) Apply Druckmann Lab filter
- Harris Lab (4) Apply Harris Lab filter
- Hermundstad Lab (1) Apply Hermundstad Lab filter
- Jayaraman Lab (9) Apply Jayaraman Lab filter
- Karpova Lab (1) Apply Karpova Lab filter
- Keller Lab (1) Apply Keller Lab filter
- Lavis Lab (8) Apply Lavis Lab filter
- Leonardo Lab (1) Apply Leonardo Lab filter
- Liu (Zhe) Lab (1) Apply Liu (Zhe) Lab filter
- Looger Lab (24) Apply Looger Lab filter
- Podgorski Lab (5) Apply Podgorski Lab filter
- Rubin Lab (1) Apply Rubin Lab filter
- Schreiter Lab (67) Apply Schreiter Lab filter
- Stringer Lab (1) Apply Stringer Lab filter
- Svoboda Lab (13) Apply Svoboda Lab filter
- Tillberg Lab (1) Apply Tillberg Lab filter
- Turner Lab (4) Apply Turner Lab filter
- Zlatic Lab (1) Apply Zlatic Lab filter
Associated Project Team
Publication Date
- 2025 (3) Apply 2025 filter
- 2024 (5) Apply 2024 filter
- 2023 (6) Apply 2023 filter
- 2021 (1) Apply 2021 filter
- 2020 (5) Apply 2020 filter
- 2019 (4) Apply 2019 filter
- 2018 (4) Apply 2018 filter
- 2017 (4) Apply 2017 filter
- 2016 (2) Apply 2016 filter
- 2015 (4) Apply 2015 filter
- 2013 (7) Apply 2013 filter
- 2012 (2) Apply 2012 filter
- 2011 (3) Apply 2011 filter
- 2010 (2) Apply 2010 filter
- 2009 (3) Apply 2009 filter
- 2008 (3) Apply 2008 filter
- 2007 (3) Apply 2007 filter
- 2006 (2) Apply 2006 filter
- 2003 (1) Apply 2003 filter
- 2001 (2) Apply 2001 filter
- 1999 (1) Apply 1999 filter
Type of Publication
67 Publications
Showing 11-20 of 67 resultsIonic driving forces provide the net electromotive force for ion movement across membranes and are therefore a fundamental property of all cells. In the nervous system, chloride driving force (DFCl) determines inhibitory signaling, as fast synaptic inhibition is mediated by chloride-permeable GABAA and glycine receptors. Here we present a new tool for all-Optical Reporting of CHloride Ion Driving force (ORCHID). We demonstrate ORCHID’s ability to provide accurate, high-throughput measurements of resting and dynamic DFCl from genetically targeted cell types over a range of timescales. ORCHID confirms theoretical predictions about the biophysical mechanisms that establish DFCl, reveals novel differences in DFCl between neurons and astrocytes under different network conditions, and affords the first in vivo measurements of intact DFCl in mouse cortical neurons. This work extends our understanding of chloride homeostasis and inhibitory synaptic transmission and establishes a precedent for utilizing all-optical methods to assess ionic driving force.
Ionic driving forces provide the net electromotive force for ion movement across receptors, channels, and transporters, and are a fundamental property of all cells. In the nervous system, fast synaptic inhibition is mediated by chloride permeable GABA and glycine receptors, and single-cell intracellular recordings have been the only method for estimating driving forces across these receptors (DF). Here we present a tool for quantifying inhibitory receptor driving force named ORCHID: all-Optical Reporting of CHloride Ion Driving force. We demonstrate ORCHID's ability to provide accurate, high-throughput measurements of resting and dynamic DF from genetically targeted cell types over multiple timescales. ORCHID confirms theoretical predictions about the biophysical mechanisms that establish DF, reveals differences in DF between neurons and astrocytes, and affords the first in vivo measurements of intact DF. This work extends our understanding of inhibitory synaptic transmission and demonstrates the potential for all-optical methods to assess ionic driving forces.
Ionic driving forces provide the net electromotive force for ion movement across receptors, channels, and transporters, and are a fundamental property of all cells. In the brain for example, fast synaptic inhibition is mediated by chloride permeable GABAA receptors, and single-cell intracellular recordings have been the only method for estimating driving forces across these receptors (DFGABAA). Here we present a new tool for quantifying inhibitory receptor driving force named ORCHID: all-Optical Reporting of CHloride Ion Driving force. We demonstrate ORCHID’s ability to provide accurate, high-throughput measurements of resting and dynamic DFGABAA from genetically targeted cell types over multiple timescales. ORCHID confirms theoretical predictions about the biophysical mechanisms that establish DFGABAA, reveals novel differences in DFGABAA between neurons and astrocytes, and affords the first in vivo measurements of intact DFGABAA. This work extends our understanding of inhibitory synaptic transmission and establishes a precedent for all-optical methods to assess ionic driving forces.
The use of fluorescent sensors for functional imaging has revolutionized the study of organellar Ca2+ signaling. However, understanding the dynamic interplay between intracellular Ca2+ sinks and sources requires bright, photostable and multiplexed measurements in each signaling compartment of interest to dissect the origins and destinations of Ca2+ fluxes. We introduce a new toolkit of chemigenetic indicators based on HaloCaMP, optimized to report Ca2+ dynamics in the endoplasmic reticulum (ER) and mitochondria of mammalian cells and neurons. Both ER-HaloCaMP and Mito-HaloCaMP present high brightness and responsiveness, and the use of different HaloTag ligands enables tunable red and far-red emission when quantifying organelle Ca2+ dynamics, expanding significantly multiplexing capacities of Ca2+ signaling. The improved brightness of ER-HaloCaMP using either red or far-red HaloTag ligands enabled measuring ER Ca2+ fluxes in axons of neurons, in which the ER is formed by a tiny tubule of 30-60 nanometers of diameter that impeded measurements with previous red ER Ca2+ sensors. When measuring ER Ca2+ fluxes in activated neuronal dendritic spines of cultured neurons, ER-HaloCaMP presented increased photostability compared to the gold-standard ER Ca2+ sensor in the field, ER-GCaMP6-210, while presenting the same responsiveness. On the other hand, Mito-HaloCaMP presented higher responsiveness than current red sensors, and enabled the first measurements of mitochondrial Ca2+ signaling in far-red in cell lines and primary neurons. As a proof-of-concept, we used 3-plex multiplexing to quantify interorganellar Ca2+ signaling. We show that effective transfer of Ca2+ from the ER to mitochondria depends on the ER releasing a critical amount of Ca2+. When this threshold is not met, the mobilized Ca2+ is diverted to the cytosol instead. Our new toolkit provides an expanded palette of bright, photostable and responsive organellar Ca2+ sensors, which will facilitate future studies of intracellular Ca2+ signaling.
We describe an intensity-based glutamate-sensing fluorescent reporter (iGluSnFR) with signal-to-noise ratio and kinetics appropriate for in vivo imaging. We engineered iGluSnFR in vitro to maximize its fluorescence change, and we validated its utility for visualizing glutamate release by neurons and astrocytes in increasingly intact neurological systems. In hippocampal culture, iGluSnFR detected single field stimulus-evoked glutamate release events. In pyramidal neurons in acute brain slices, glutamate uncaging at single spines showed that iGluSnFR responds robustly and specifically to glutamate in situ, and responses correlate with voltage changes. In mouse retina, iGluSnFR-expressing neurons showed intact light-evoked excitatory currents, and the sensor revealed tonic glutamate signaling in response to light stimuli. In worms, glutamate signals preceded and predicted postsynaptic calcium transients. In zebrafish, iGluSnFR revealed spatial organization of direction-selective synaptic activity in the optic tectum. Finally, in mouse forelimb motor cortex, iGluSnFR expression in layer V pyramidal neurons revealed task-dependent single-spine activity during running.
Although the endoplasmic reticulum (ER) extends throughout axons and axonal ER dysfunction is implicated in numerous neurological diseases, its role at nerve terminals is poorly understood. We developed novel genetically encoded ER-targeted low-affinity Ca(2+) indicators optimized for examining axonal ER Ca(2+). Our experiments revealed that presynaptic function is tightly controlled by ER Ca(2+) content. We found that neuronal activity drives net Ca(2+) uptake into presynaptic ER although this activity does not contribute significantly to shaping cytosolic Ca(2+) except during prolonged repetitive firing. In contrast, we found that axonal ER acts as an actuator of plasma membrane (PM) function: [Ca(2+)]ER controls STIM1 activation in presynaptic terminals, which results in the local modulation of presynaptic function, impacting activity-driven Ca(2+) entry and release probability. These experiments reveal a critical role of presynaptic ER in the control of neurotransmitter release and will help frame future investigations into the molecular basis of ER-driven neuronal disease states.
Imaging changes in membrane potential using genetically encoded fluorescent voltage indicators (GEVIs) has great potential for monitoring neuronal activity with high spatial and temporal resolution. Brightness and photostability of fluorescent proteins and rhodopsins have limited the utility of existing GEVIs. We engineered a novel GEVI, "Voltron", that utilizes bright and photostable synthetic dyes instead of protein-based fluorophores, extending the combined duration of imaging and number of neurons imaged simultaneously by more than tenfold relative to existing GEVIs. We used Voltron for in vivo voltage imaging in mice, zebrafish, and fruit flies. In mouse cortex, Voltron allowed single-trial recording of spikes and subthreshold voltage signals from dozens of neurons simultaneously, over 15 min of continuous imaging. In larval zebrafish, Voltron enabled the precise correlation of spike timing with behavior.
The suppression of tumorigenicity 2/IL-33 (ST2/IL-33) pathway has been implicated in several immune and inflammatory diseases. ST2 is produced as 2 isoforms. The membrane-bound isoform (ST2L) induces an immune response when bound to its ligand, IL-33. The other isoform is a soluble protein (sST2) that is thought to be a decoy receptor for IL-33 signaling. Elevated sST2 levels in serum are associated with an increased risk for cardiovascular disease. We investigated the determinants of sST2 plasma concentrations in 2,991 Framingham Offspring Cohort participants. While clinical and environmental factors explained some variation in sST2 levels, much of the variation in sST2 production was driven by genetic factors. In a genome-wide association study (GWAS), multiple SNPs within IL1RL1 (the gene encoding ST2) demonstrated associations with sST2 concentrations. Five missense variants of IL1RL1 correlated with higher sST2 levels in the GWAS and mapped to the intracellular domain of ST2, which is absent in sST2. In a cell culture model, IL1RL1 missense variants increased sST2 expression by inducing IL-33 expression and enhancing IL-33 responsiveness (via ST2L). Our data suggest that genetic variation in IL1RL1 can result in increased levels of sST2 and alter immune and inflammatory signaling through the ST2/IL-33 pathway.
NikR is a metal-responsive transcription factor that controls nickel uptake in Escherichia coli by regulating expression of a nickel-specific ATP-binding cassette (ABC) transporter. We have determined the first two structures of NikR: the full-length apo repressor at a resolution of 2.3 A and the nickel-bound C-terminal regulatory domain at a resolution of 1.4 A. NikR is the only known metal-responsive member of the ribbon-helix-helix family of transcription factors, and its structure has a quaternary arrangement consisting of two dimeric DNA-binding domains separated by a tetrameric regulatory domain that binds nickel. The position of the C-terminal regulatory domain enforces a large spacing between the contacts that each NikR DNA-binding domain can make with the nik operator. The regulatory domain of NikR contains four nickel-binding sites at the tetramer interface, each exhibiting a novel square-planar coordination by three histidines and one cysteine side chain.