Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
More in this page
janelia7_blocks-janelia7_fake_breadcrumb | block
Sgro Lab / Publications
general_search_page-panel_pane_1 | views_panes

20 Publications

Showing 11-20 of 20 results
09/01/22 | Leveraging the model-experiment loop: Examples from cellular slime mold chemotaxis.
Zhu X, Hager ER, Huyan C, Sgro AE
Exp Cell Res. 09/2022;418(1):113218. doi: 10.1016/j.yexcr.2022.113218

Interplay between models and experimental data advances discovery and understanding in biology, particularly when models generate predictions that allow well-designed experiments to distinguish between alternative mechanisms. To illustrate how this feedback between models and experiments can lead to key insights into biological mechanisms, we explore three examples from cellular slime mold chemotaxis. These examples include studies that identified chemotaxis as the primary mechanism behind slime mold aggregation, discovered that cells likely measure chemoattractant gradients by sensing concentration differences across cell length, and tested the role of cell-associated chemoattractant degradation in shaping chemotactic fields. Although each study used a different model class appropriate to their hypotheses - qualitative, mathematical, or simulation-based - these examples all highlight the utility of modeling to formalize assumptions and generate testable predictions. A central element of this framework is the iterative use of models and experiments, specifically: matching experimental designs to the models, revising models based on mismatches with experimental data, and validating critical model assumptions and predictions with experiments. We advocate for continued use of this interplay between models and experiments to advance biological discovery.

View Publication Page
05/07/22 | Microbial models of development: Inspiration for engineering self-assembled synthetic multicellularity.
Ricci-Tam C, Kuipa S, Kostman MP, Aronson MS, Sgro AE
Semin Cell Dev Biol. 05/2022:. doi: 10.1016/j.semcdb.2022.04.014

While the field of synthetic developmental biology has traditionally focused on the study of the rich developmental processes seen in metazoan systems, an attractive alternate source of inspiration comes from microbial developmental models. Microbes face unique lifestyle challenges when forming emergent multicellular collectives. As a result, the solutions they employ can inspire the design of novel multicellular systems. In this review, we dissect the strategies employed in multicellular development by two model microbial systems: the cellular slime mold Dictyostelium discoideum and the biofilm-forming bacterium Bacillus subtilis. Both microbes face similar challenges but often have different solutions, both from metazoan systems and from each other, to create emergent multicellularity. These challenges include assembling and sustaining a critical mass of participating individuals to support development, regulating entry into development, and assigning cell fates. The mechanisms these microbial systems exploit to robustly coordinate development under a wide range of conditions offer inspiration for a new toolbox of solutions to the synthetic development community. Additionally, recreating these phenomena synthetically offers a pathway to understanding the key principles underlying how these behaviors are be coordinated naturally.

View Publication Page
06/15/15 | Modeling oscillations and spiral waves in Dictyostelium populations.
Noorbakhsh J, Schwab DJ, Sgro AE, Gregor T, Mehta P
Phys Rev E Stat Nonlin Soft Matter Phys. 06/2015;91(6):062711. doi: 10.1103/PhysRevE.91.062711

Unicellular organisms exhibit elaborate collective behaviors in response to environmental cues. These behaviors are controlled by complex biochemical networks within individual cells and coordinated through cell-to-cell communication. Describing these behaviors requires new mathematical models that can bridge scales-from biochemical networks within individual cells to spatially structured cellular populations. Here we present a family of "multiscale" models for the emergence of spiral waves in the social amoeba Dictyostelium discoideum. Our models exploit new experimental advances that allow for the direct measurement and manipulation of the small signaling molecule cyclic adenosine monophosphate (cAMP) used by Dictyostelium cells to coordinate behavior in cellular populations. Inspired by recent experiments, we model the Dictyostelium signaling network as an excitable system coupled to various preprocessing modules. We use this family of models to study spatially unstructured populations of "fixed" cells by constructing phase diagrams that relate the properties of population-level oscillations to parameters in the underlying biochemical network. We then briefly discuss an extension of our model that includes spatial structure and show how this naturally gives rise to spiral waves. Our models exhibit a wide range of novel phenomena. including a density-dependent frequency change, bistability, and dynamic death due to slow cAMP dynamics. Our modeling approach provides a powerful tool for bridging scales in modeling of Dictyostelium populations.

View Publication Page
11/05/14 | Quantitative biology: where modern biology meets physical sciences.
Shekhar S, Zhu L, Mazutis L, Sgro AE, Fai TG, Podolski M
Mol Biol Cell. 11/2014;25(22):3482-5. doi: 10.1091/mbc.E14-08-1286

Quantitative methods and approaches have been playing an increasingly important role in cell biology in recent years. They involve making accurate measurements to test a predefined hypothesis in order to compare experimental data with predictions generated by theoretical models, an approach that has benefited physicists for decades. Building quantitative models in experimental biology not only has led to discoveries of counterintuitive phenomena but has also opened up novel research directions. To make the biological sciences more quantitative, we believe a two-pronged approach needs to be taken. First, graduate training needs to be revamped to ensure biology students are adequately trained in physical and mathematical sciences and vice versa. Second, students of both the biological and the physical sciences need to be provided adequate opportunities for hands-on engagement with the methods and approaches necessary to be able to work at the intersection of the biological and physical sciences. We present the annual Physiology Course organized at the Marine Biological Laboratory (Woods Hole, MA) as a case study for a hands-on training program that gives young scientists the opportunity not only to acquire the tools of quantitative biology but also to develop the necessary thought processes that will enable them to bridge the gap between these disciplines.

View Publication Page
02/20/13 | Single-axonal organelle analysis method reveals new protein-motor associations.
Sgro AE, Bajjalieh SM, Chiu DT
ACS Chem Neurosci. 02/2013;4(2):277-84. doi: 10.1021/cn300136y

Axonal transport of synaptic vesicle proteins is required to maintain neurons' ability to communicate via synaptic transmission. Neurotransmitter-containing synaptic vesicles are assembled at synaptic terminals via highly regulated endocytosis of membrane proteins. These synaptic vesicle membrane proteins are synthesized in the cell body and transported to synapses in carrier vesicles that make their way down axons via microtubule-based transport utilizing kinesin molecular motors. Identifying the cargos that each kinesin motor protein carries from the cell bodies to the synapse is key to understanding both diseases caused by motor protein dysfunction and how synaptic vesicles are assembled. However, obtaining a bulk sample of axonal transport complexes from central nervous system (CNS) neurons to use for identification of their contents has posed a challenge to researchers. To obtain axonal carrier vesicles from primary cultured neurons, we fabricated a microfluidic chip designed to physically isolate axons from dendrites and cell bodies and developed a method to remove bulk axonal samples and label their contents. Synaptic vesicle protein carrier vesicles in these samples were labeled with antibodies to the synaptic vesicle proteins p38, SV2A, and VAMP2, and the anterograde axonal transport motor KIF1A, after which antibody overlap was evaluated using single-organelle TIRF microscopy. This work confirms a previously discovered association between KIF1A and p38 and shows that KIF1A also transports SV2A- and VAMP2-containing carrier vesicles.

View Publication Page
08/15/08 | Single-synapse ablation and long-term imaging in live C. elegans.
Allen PB, Sgro AE, Chao DL, Doepker BE, Scott Edgar J, Shen K, Chiu DT
J Neurosci Methods. 09/2008;173(1):20-6. doi: 10.1016/j.jneumeth.2008.05.007

Synapses are individually operated, computational units for neural communication. To manipulate physically individual synapses in a living organism, we have developed a laser ablation technique for removing single synapses in live neurons in C. elegans that operates without apparent damage to the axon. As a complementary technique, we applied microfluidic immobilization of C. elegans to facilitate long-term fluorescence imaging and observation of neuronal development. With this technique, we directly demonstrated the existence of competition between developing synapses in the HSNL motor neuron.

View Publication Page
06/22/12 | SnapShot: Optical control and imaging of brain activity.
Richard Sun X, Giovannucci A, Sgro AE, Wang SS
Cell. 06/2012;149(7):1650-1650.e2. doi: 10.1016/j.cell.2012.06.009

No abstract available.

View Publication Page
05/18/11 | Synaptosomes as a platform for loading nanoparticles into synaptic vesicles.
Budzinski KL, Sgro AE, Fujimoto BS, Gadd JC, Shuart NG, Gonen T, Bajjaleih SM, Chiu DT
ACS Chemical Neuroscience. 2011 May 18;2(5):236-241. doi: 10.1021/cn200009n

Synaptosomes are intact, isolated nerve terminals that contain the necessary machinery to recycle synaptic vesicles via endocytosis and exocytosis upon stimulation. Here we use this property of synaptosomes to load quantum dots into synaptic vesicles. Vesicles are then isolated from the synaptosomes, providing a method to probe isolated, individual synaptic vesicles where each vesicle contains a single, encapsulated nanoparticle. This technique provided an encapsulation efficiency of  16%, that is,  16% of the vesicles contained a single quantum dot while the remaining vesicles were empty. The ability to load single nanoparticles into synaptic vesicles opens new opportunity for employing various nanoparticle-based sensors to study the dynamics of vesicular transporters.

View Publication Page
07/01/07 | Thermoelectric manipulation of aqueous droplets in microfluidic devices.
Sgro AE, Allen PB, Chiu DT
Anal Chem. 07/2007;79(13):4845-51. doi: 10.1021/ac062458a

This article describes a method for manipulating the temperature inside aqueous droplets, utilizing a thermoelectric cooler to control the temperature of select portions of a microfluidic chip. To illustrate the adaptability of this approach, we have generated an "ice valve" to stop fluid flow in a microchannel. By taking advantage of the vastly different freezing points for aqueous solutions and immiscible oils, we froze a stream of aqueous droplets that were formed on-chip. By integrating this technique with cell encapsulation into aqueous droplets, we were also able to freeze single cells encased in flowing droplets. Using a live-dead stain, we confirmed the viability of cells was not adversely affected by the process of freezing in aqueous droplets provided cryoprotectants were utilized. When combined with current droplet methodologies, this technology has the potential to both selectively heat and cool portions of a chip for a variety of droplet-related applications, such as freezing, temperature cycling, sample archiving, and controlling reaction kinetics.

View Publication Page
08/19/21 | Ventral stress fibers induce plasma membrane deformation in human fibroblasts.
Ghilardi SJ, Aronson MS, Sgro AE
Mol Biol Cell. 08/2021;32(18):1707-1723. doi: 10.1091/mbc.E21-03-0096

Interactions between the actin cytoskeleton and the plasma membrane are important in many eukaryotic cellular processes. During these processes, actin structures deform the cell membrane outward by applying forces parallel to the fiber's major axis (as in migration) or they deform the membrane inward by applying forces perpendicular to the fiber's major axis (as in the contractile ring during cytokinesis). Here we describe a novel actin-membrane interaction in human dermal myofibroblasts. When labeled with a cytosolic fluorophore, the myofibroblasts displayed prominent fluorescent structures on the ventral side of the cell. These structures are present in the cell membrane and colocalize with ventral actin stress fibers, suggesting that the stress fibers bend the membrane to form a "cytosolic pocket" that the fluorophores diffuse into, creating the observed structures. The existence of this pocket was confirmed by transmission electron microscopy. While dissolving the stress fibers, inhibiting fiber protein binding, or inhibiting myosin II binding of actin removed the observed pockets, modulating cellular contractility did not remove them. Taken together, our results illustrate a novel actin-membrane bending topology where the membrane is deformed outward rather than being pinched inward, resembling the topological inverse of the contractile ring found in cytokinesis.

View Publication Page