Filter
Associated Lab
- Dudman Lab (1) Apply Dudman Lab filter
- Fetter Lab (1) Apply Fetter Lab filter
- Fitzgerald Lab (2) Apply Fitzgerald Lab filter
- Harris Lab (4) Apply Harris Lab filter
- Lavis Lab (1) Apply Lavis Lab filter
- Lee (Albert) Lab (1) Apply Lee (Albert) Lab filter
- Looger Lab (1) Apply Looger Lab filter
- Magee Lab (2) Apply Magee Lab filter
- Menon Lab (4) Apply Menon Lab filter
- Romani Lab (1) Apply Romani Lab filter
- Rubin Lab (1) Apply Rubin Lab filter
- Spruston Lab (91) Apply Spruston Lab filter
- Sternson Lab (1) Apply Sternson Lab filter
- Stringer Lab (1) Apply Stringer Lab filter
- Svoboda Lab (3) Apply Svoboda Lab filter
- Tillberg Lab (1) Apply Tillberg Lab filter
Associated Project Team
Publication Date
- 2023 (3) Apply 2023 filter
- 2022 (2) Apply 2022 filter
- 2021 (3) Apply 2021 filter
- 2020 (5) Apply 2020 filter
- 2019 (6) Apply 2019 filter
- 2018 (8) Apply 2018 filter
- 2017 (1) Apply 2017 filter
- 2016 (6) Apply 2016 filter
- 2015 (7) Apply 2015 filter
- 2014 (1) Apply 2014 filter
- 2013 (2) Apply 2013 filter
- 2012 (4) Apply 2012 filter
- 2011 (1) Apply 2011 filter
- 2010 (2) Apply 2010 filter
- 2009 (4) Apply 2009 filter
- 2008 (3) Apply 2008 filter
- 2007 (4) Apply 2007 filter
- 2006 (2) Apply 2006 filter
- 2005 (5) Apply 2005 filter
- 2003 (1) Apply 2003 filter
- 2002 (1) Apply 2002 filter
- 2001 (2) Apply 2001 filter
- 2000 (2) Apply 2000 filter
- 1999 (3) Apply 1999 filter
- 1998 (3) Apply 1998 filter
- 1997 (3) Apply 1997 filter
- 1995 (3) Apply 1995 filter
- 1994 (2) Apply 1994 filter
- 1993 (1) Apply 1993 filter
- 1992 (1) Apply 1992 filter
Type of Publication
91 Publications
Showing 51-60 of 91 resultsTo study how the brain drives cognition and behavior we need to understand its cellular composition. Advances in single-cell transcriptomics have revolutionized our ability to characterize neuronal diversity. To arrive at meaningful descriptions of cell types, however, gene expression must be linked to structural and functional properties. Axonal projection patterns are an appropriate measure, as they are diverse, change only gradually over time, and they influence and constrain circuit function. Here, we consider how efforts to map transcriptional and morphological diversity in the mouse brain could be linked to generate a modern taxonomy of the mouse brain.
To study how the brain drives cognition and behavior we need to understand its cellular composition. Advances in single-cell transcriptomics have revolutionized our ability to characterize neuronal diversity. To arrive at meaningful descriptions of cell types, however, gene expression must be linked to structural and functional properties. Axonal projection patterns are an appropriate measure, as they are diverse, change only gradually over time, and they influence and constrain circuit function. Here, we consider how efforts to map transcriptional and morphological diversity in the mouse brain could be linked to generate a modern taxonomy of the mouse brain.
Understanding the principles governing neuronal diversity is a fundamental goal for neuroscience. Here we provide an anatomical and transcriptomic database of nearly 200 genetically identified cell populations. By separately analyzing the robustness and pattern of expression differences across these cell populations, we identify two gene classes contributing distinctly to neuronal diversity. Short homeobox transcription factors distinguish neuronal populations combinatorially, and exhibit extremely low transcriptional noise, enabling highly robust expression differences. Long neuronal effector genes, such as channels and cell adhesion molecules, contribute disproportionately to neuronal diversity, based on their patterns rather than robustness of expression differences. By linking transcriptional identity to genetic strains and anatomical atlases we provide an extensive resource for further investigation of mouse neuronal cell types.
Abstract We recently described a new form of neural integration and firing in a subset of interneurons, in which evoking hundreds of action potentials over tens of seconds to minutes produces a sudden barrage of action potentials lasting about a minute beyond the inciting stimulation. During this persistent firing, action potentials are generated in the distal axon and propagate retrogradely to the soma. To distinguish this from other forms of persistent firing, we refer to it here as ’retroaxonal barrage firing’, or ’barrage firing’ for short. Its induction is blocked by chemical inhibitors of gap junctions and curiously, stimulation of one interneuron in some cases triggers barrage firing in a nearby, unstimulated interneuron. Beyond these clues, the mechanisms of barrage firing are unknown. Here we report new results related to these mechanisms. Induction of barrage firing was blocked by lowering extracellular calcium, as long as normal action potential threshold was maintained, and it was inhibited by blocking L-type voltage-gated calcium channels. Despite its calcium dependence, barrage firing was not prevented by inhibiting chemical synaptic transmission. Furthermore, loading the stimulated/recorded interneuron with BAPTA did not block barrage firing, suggesting that the required calcium entry occurs in other cells. Finally, barrage firing was normal in mice with deletion of the primary gene for neuronal gap junctions (connexin36), suggesting that non-neuronal gap junctions may be involved. Together, these findings suggest that barrage firing is probably triggered by a multicellular mechanism involving calcium signalling and gap junctions, but operating independently of chemical synaptic transmission.
Excitatory postsynaptic currents in neurones of the central nervous system have a dual-component time course that results from the co-activation of AMPA/kainate-type and NMDA-type glutamate receptors. New approaches in electrophysiology and molecular biology have provided a better understanding of the factors that determine the kinetics of excitatory postsynaptic currents. Recent studies suggest that the time course of neurotransmitter concentration in the synaptic cleft, the gating properties of the native channels, and the glutamate receptor subunit composition all appear to be important factors.
As animals navigate, they must identify features within context. In the mammalian brain, the hippocampus has the ability to separately encode different environmental contexts, even when they share some prominent features. To do so, neurons respond to sensory features in a context-dependent manner; however, it is not known how this encoding emerges. To examine this, we performed electrical recordings in the hippocampus as mice navigated in two distinct virtual environments. In CA1, both synaptic input to single neurons and population activity strongly tracked visual cues in one environment, whereas responses were almost completely absent when the same cue was presented in a second environment. A very similar, highly context-dependent pattern of cue-driven spiking was also observed in CA3. These results indicate that CA1 inherits a complex spatial code from upstream regions, including CA3, that have already computed a context-dependent representation of environmental features.
Animals can learn general task structures and use them to solve new problems with novel sensory specifics. This capacity of ‘learning to learn’, or meta-learning, is difficult to achieve in artificial systems, and the mechanisms by which it is achieved in animals are unknown. As a step toward enabling mechanistic studies, we developed a behavioral paradigm that demonstrates meta-learning in head-fixed mice. We trained mice to perform a two-alternative forced-choice task in virtual reality (VR), and successively changed the visual cues that signaled reward location. Mice showed increased learning speed in both cue generalization and serial reversal tasks. During reversal learning, behavior exhibited sharp transitions, with the transition occurring earlier in each successive reversal. Analysis of motor patterns revealed that animals utilized similar motor programs to execute the same actions in response to different cues but modified the motor programs during reversal learning. Our study demonstrates that mice can perform meta-learning tasks in VR, thus opening up opportunities for future mechanistic studies.
Electrophysiology is the most used approach for the collection of functional data in basic and translational neuroscience, but it is typically limited to either intracellular or extracellular recordings. The integration of multiple physiological modalities for the routine acquisition of multimodal data with microelectrodes could be useful for biomedical applications, yet this has been challenging owing to incompatibilities of fabrication methods. Here, we present a suite of glass pipettes with integrated microelectrodes for the simultaneous acquisition of multimodal intracellular and extracellular information in vivo, electrochemistry assessments, and optogenetic perturbations of neural activity. We used the integrated devices to acquire multimodal signals from the CA1 region of the hippocampus in mice and rats, and show that these data can serve as ground-truth validation for the performance of spike-sorting algorithms. The microdevices are applicable for basic and translational neurobiology, and for the development of next-generation brain-machine interfaces.
Our ability to remember the past is essential for guiding our future behavior. Psychological and neurobiological features of declarative memories are known to transform over time in a process known as systems consolidation. While many theories have sought to explain the time-varying role of hippocampal and neocortical brain areas, the computational principles that govern these transformations remain unclear. Here we propose a theory of systems consolidation in which hippocampal-cortical interactions serve to optimize generalizations that guide future adaptive behavior. We use mathematical analysis of neural network models to characterize fundamental performance tradeoffs in systems consolidation, revealing that memory components should be organized according to their predictability. The theory shows that multiple interacting memory systems can outperform just one, normatively unifying diverse experimental observations and making novel experimental predictions. Our results suggest that the psychological taxonomy and neurobiological organization of declarative memories reflect a system optimized for behaving well in an uncertain future.
Transitions between different behavioral states, such as sleep or wakefulness, quiescence or attentiveness, occur in part through transitions from action potential bursting to single spiking. Cortical activity, for example, is determined in large part by the spike output mode from the thalamus, which is controlled by the gating of low-voltage-activated calcium channels. In the subiculum--the major output of the hippocampus--transitions occur from bursting in the delta-frequency band to single spiking in the theta-frequency band. We show here that these transitions are influenced strongly by the inactivation kinetics of voltage-gated sodium channels. Prolonged inactivation of sodium channels is responsible for an activity-dependent switch from bursting to single spiking, constituting a novel mechanism through which network dynamics are controlled by ion channel gating.