Filter
Associated Lab
- Dudman Lab (2) Apply Dudman Lab filter
- Fetter Lab (1) Apply Fetter Lab filter
- Fitzgerald Lab (2) Apply Fitzgerald Lab filter
- Harris Lab (4) Apply Harris Lab filter
- Lavis Lab (2) Apply Lavis Lab filter
- Lee (Albert) Lab (1) Apply Lee (Albert) Lab filter
- Looger Lab (1) Apply Looger Lab filter
- Magee Lab (2) Apply Magee Lab filter
- Menon Lab (4) Apply Menon Lab filter
- Romani Lab (1) Apply Romani Lab filter
- Rubin Lab (1) Apply Rubin Lab filter
- Spruston Lab (93) Apply Spruston Lab filter
- Sternson Lab (1) Apply Sternson Lab filter
- Stringer Lab (1) Apply Stringer Lab filter
- Svoboda Lab (3) Apply Svoboda Lab filter
- Tillberg Lab (3) Apply Tillberg Lab filter
Associated Project Team
Publication Date
- 2025 (3) Apply 2025 filter
- 2023 (2) Apply 2023 filter
- 2022 (2) Apply 2022 filter
- 2021 (3) Apply 2021 filter
- 2020 (5) Apply 2020 filter
- 2019 (6) Apply 2019 filter
- 2018 (8) Apply 2018 filter
- 2017 (1) Apply 2017 filter
- 2016 (6) Apply 2016 filter
- 2015 (7) Apply 2015 filter
- 2014 (1) Apply 2014 filter
- 2013 (2) Apply 2013 filter
- 2012 (4) Apply 2012 filter
- 2011 (1) Apply 2011 filter
- 2010 (2) Apply 2010 filter
- 2009 (4) Apply 2009 filter
- 2008 (3) Apply 2008 filter
- 2007 (4) Apply 2007 filter
- 2006 (2) Apply 2006 filter
- 2005 (5) Apply 2005 filter
- 2003 (1) Apply 2003 filter
- 2002 (1) Apply 2002 filter
- 2001 (2) Apply 2001 filter
- 2000 (2) Apply 2000 filter
- 1999 (3) Apply 1999 filter
- 1998 (3) Apply 1998 filter
- 1997 (3) Apply 1997 filter
- 1995 (3) Apply 1995 filter
- 1994 (2) Apply 1994 filter
- 1993 (1) Apply 1993 filter
- 1992 (1) Apply 1992 filter
Type of Publication
93 Publications
Showing 81-90 of 93 resultsTissue and organ function has been conventionally understood in terms of the interactions among discrete and homogeneous cell types. This approach has proven difficult in neuroscience due to the marked diversity across different neuron classes, but it may be further hampered by prominent within-class variability. Here, we considered a well-defined canonical neuronal population-hippocampal CA1 pyramidal cells (CA1 PCs)-and systematically examined the extent and spatial rules of transcriptional heterogeneity. Using next-generation RNA sequencing, we identified striking variability in CA1 PCs, such that the differences within CA1 along the dorsal-ventral axis rivaled differences across distinct pyramidal neuron classes. This variability emerged from a spectrum of continuous gene-expression gradients, producing a transcriptional profile consistent with a multifarious continuum of cells. This work reveals an unexpected amount of variability within a canonical and narrowly defined neuronal population and suggests that continuous, within-class heterogeneity may be an important feature of neural circuits.
Because of their strategic position between the granule cell and pyramidal cell layers, neurons of the hilar region of the hippocampal formation are likely to play an important role in the information processing between the entorhinal cortex and the hippocampus proper. Here we present an electrophysiological characterization of anatomically identified neurons in the fascia dentata as studied using patch-pipette recordings and subsequent biocytin-staining of neurons in slices. The resting potential, input resistance (RN), membrane time constant (taum), "sag" in hyperpolarizing responses, maximum firing rate during a 1-s current pulse, spike width, and fast and slow afterhyperpolarizations (AHPs) were determined for several different types of hilar neurons. Basket cells had a dense axonal plexus almost exclusively within the granule cell layer and were distinguishable by their low RN, short taum, lack of sag, and rapid firing rates. Dentate granule cells also lacked sag and were identifiable by their higher RN, longer taum, and lower firing rates than basket cells. Mossy cells had extensive axon collaterals within the hilus and a few long-range collaterals to the inner molecular layer and CA3c and were characterized physiologically by small fast and slow AHPs. Spiny and aspiny hilar interneurons projected primarily either to the inner or outer segment of the molecular layer and had a dense intrahilar axonal plexus, terminating onto somata within the hilus and CA3c. Physiologically, spiny hilar interneurons generally had higher RN values than mossy cells and a smaller slow AHP than aspiny interneurons. The specialized physiological properties of different classes of hilar neurons are likely to be important determinants of their functional operation within the hippocampal circuitry.
CA1 pyramidal neurons from animals that have acquired hippocampal tasks show increased neuronal excitability, as evidenced by a reduction in the postburst afterhyperpolarization (AHP). Studies of AHP plasticity require stable long-term recordings, which are affected by the intracellular solutions potassium methylsulphate (KMeth) or potassium gluconate (KGluc). Here we show immediate and gradual effects of these intracellular solutions on measurement of the AHP and basic membrane properties, and on the induction of AHP plasticity in CA1 pyramidal neurons from rat hippocampal slices. The AHP measured immediately after establishing whole-cell recordings was larger with KMeth than with KGluc. In general, the AHP in KMeth was comparable to the AHP measured in the perforated-patch configuration. However, KMeth induced time-dependent changes in the intrinsic membrane properties of CA1 pyramidal neurons. Specifically, input resistance progressively increased by 70% after 50 min; correspondingly, the current required to trigger an action potential and the fast afterdepolarization following action potentials gradually decreased by about 50%. Conversely, these measures were stable in KGluc. We also demonstrate that activity-dependent plasticity of the AHP occurs with physiologically relevant stimuli in KGluc. AHPs triggered with theta-burst firing every 30 s were progressively reduced, whereas AHPs elicited every 150 s were stable. Blockade of the apamin-sensitive AHP current (I(AHP)) was insufficient to block AHP plasticity, suggesting that plasticity is manifested through changes in the apamin-insensitive slow AHP current (sI(AHP)). These changes were observed in the presence of synaptic blockers, and therefore reflect changes in the intrinsic properties of the neurons. However, no AHP plasticity was observed using KMeth. In summary, these data show that KMeth produces time-dependent changes in basic membrane properties and prevents or obscures activity-dependent reduction of the AHP. In whole-cell recordings using KGluc, repetitive theta-burst firing induced AHP plasticity that mimics learning-related reduction in the AHP.
Neuronal circuit function is governed by precise patterns of connectivity between specialized groups of neurons. The diversity of GABAergic interneurons is a hallmark of cortical circuits, yet little is known about their targeting to individual postsynaptic dendrites. We examined synaptic connectivity between molecularly defined inhibitory interneurons and CA1 pyramidal cell dendrites using correlative light-electron microscopy and large-volume array tomography. We show that interneurons can be highly selective in their connectivity to specific dendritic branch types and, furthermore, exhibit precisely targeted connectivity to the origin or end of individual branches. Computational simulations indicate that the observed subcellular targeting enables control over the nonlinear integration of synaptic input or the initiation and backpropagation of action potentials in a branch-selective manner. Our results demonstrate that connectivity between interneurons and pyramidal cell dendrites is more precise and spatially segregated than previously appreciated, which may be a critical determinant of how inhibition shapes dendritic computation.
Competing models have been proposed to explain how neurons integrate the thousands of inputs distributed throughout their dendritic trees. In a simple global integration model, inputs from all locations sum in the axon. In a two-stage integration model, inputs contribute directly to dendritic spikes, and outputs from multiple branches sum in the axon. These two models yield opposite predictions of how synapses at different dendritic locations should be scaled if they are to contribute equally to neuronal output. We used serial-section electron microscopy to reconstruct individual apical oblique dendritic branches of CA1 pyramidal neurons and observe a synapse distribution consistent with the two-stage integration model. Computational modeling suggests that the observed synapse distribution enhances the contribution of each dendritic branch to neuronal output.
Dendritic spines are the nearly ubiquitous site of excitatory synaptic input onto neurons and as such are critically positioned to influence diverse aspects of neuronal signalling. Decades of theoretical studies have proposed that spines may function as highly effective and modifiable chemical and electrical compartments that regulate synaptic efficacy, integration and plasticity. Experimental studies have confirmed activity-dependent structural dynamics and biochemical compartmentalization by spines. However, there is a longstanding debate over the influence of spines on the electrical aspects of synaptic transmission and dendritic operation. Here we measure the amplitude ratio of spine head to parent dendrite voltage across a range of dendritic compartments and calculate the associated spine neck resistance (R(neck)) for spines at apical trunk dendrites in rat hippocampal CA1 pyramidal neurons. We find that R(neck) is large enough ( 500 MΩ) to amplify substantially the spine head depolarization associated with a unitary synaptic input by 1.5- to 45-fold, depending on parent dendritic impedance. A morphologically realistic compartmental model capable of reproducing the observed spatial profile of the amplitude ratio indicates that spines provide a consistently high-impedance input structure throughout the dendritic arborization. Finally, we demonstrate that the amplification produced by spines encourages electrical interaction among coactive inputs through an R(neck)-dependent increase in spine head voltage-gated conductance activation. We conclude that the electrical properties of spines promote nonlinear dendritic processing and associated forms of plasticity and storage, thus fundamentally enhancing the computational capabilities of neurons.
Long-term potentiation (LTP) requires postsynaptic depolarization that can result from EPSPs paired with action potentials or larger EPSPs that trigger dendritic spikes. We explored the relative contribution of these sources of depolarization to LTP induction during synaptically driven action potential firing in hippocampal CA1 pyramidal neurons. Pairing of a weak test input with a strong input resulted in large LTP (approximately 75% increase) when the weak and strong inputs were both located in the apical dendrites. This form of LTP did not require somatic action potentials. When the strong input was located in the basal dendrites, the resulting LTP was smaller (< or =25% increase). Pairing the test input with somatically evoked action potentials mimicked this form of LTP. Thus, back-propagating action potentials may contribute to modest LTP, but local synaptic depolarization and/or dendritic spikes mediate a stronger form of LTP that requires spatial proximity of the associated synaptic inputs.
A variety of neurotransmitters are responsible for regulating neural activity during different behavioral states. Unique responses to combinations of neurotransmitters provide a powerful mechanism by which neural networks could be differentially activated during a broad range of behaviors. Here, we show, using whole-cell recordings in rat hippocampal slices, that group I metabotropic glutamate receptors (mGluRs) and muscarinic acetylcholine receptors (mAChRs) synergistically increase the excitability of hippocampal CA1 pyramidal neurons by converting the post-burst afterhyperpolarization to an afterdepolarization via a rapidly reversible upregulation of Ca(v)2.3 R-type calcium channels. Coactivation of mAChRs and mGluRs also induced a long-lasting enhancement of the responses mediated by each receptor type. These results suggest that cooperative signaling via mAChRs and group I mGluRs could provide a mechanism by which cognitive processes may be modulated by conjoint activation of two separate neurotransmitter systems.
Pyramidal neurons in the subiculum project to a variety of cortical and subcortical areas in the brain to convey information processed in the hippocampus. Previous studies have shown that two groups of subicular pyramidal neurons–regular-spiking and bursting neurons–are distributed in an organized fashion along the proximal-distal axis, with more regular-spiking neurons close to CA1 (proximal) and more bursting neurons close to presubiculum (distal). Anatomically, neurons projecting to some targets are located more proximally along this axis, while others are located more distally. However, the relationship between the firing properties and the targets of subicular pyramidal neurons is not known. To study this relationship, we used in vivo injections of retrogradely transported fluorescent beads into each of nine different regions and conducted whole-cell current-clamp recordings from the bead-containing subicular neurons in acute brain slices. We found that subicular projections to each area were composed of a mixture of regular-spiking and bursting neurons. Neurons projecting to amygdala, lateral entorhinal cortex, nucleus accumbens, and medial/ventral orbitofrontal cortex were located primarily in the proximal subiculum and consisted mostly of regular-spiking neurons (\~{}80%). By contrast, neurons projecting to medial EC, presubiculum, retrosplenial cortex, and ventromedial hypothalamus were located primarily in the distal subiculum and consisted mostly of bursting neurons (\~{}80%). Neurons projecting to a thalamic nucleus were located in the middle portion of subiculum, and their probability of bursting was close to 50%. Thus, the fraction of bursting neurons projecting to each target region was consistent with the known distribution of regular-spiking and bursting neurons along the proximal-distal axis of the subiculum. Variation in the distribution of regular-spiking and bursting neurons suggests that different types of information are conveyed from the subiculum to its various targets.
In the hippocampus, the classical pyramidal cell type of the subiculum acts as a primary output, conveying hippocampal signals to a diverse suite of downstream regions. Accumulating evidence suggests that the subiculum pyramidal cell population may actually be comprised of discrete subclasses. Here, we investigated the extent and organizational principles governing pyramidal cell heterogeneity throughout the mouse subiculum. Using single-cell RNA-seq, we find that the subiculum pyramidal cell population can be deconstructed into eight separable subclasses. These subclasses were mapped onto abutting spatial domains, ultimately producing a complex laminar and columnar organization with heterogeneity across classical dorsal-ventral, proximal-distal, and superficial-deep axes. We further show that these transcriptomically defined subclasses correspond to differential protein products and can be associated with specific projection targets. This work deconstructs the complex landscape of subiculum pyramidal cells into spatially segregated subclasses that may be observed, controlled, and interpreted in future experiments.