Filter
Associated Lab
- Ahrens Lab (2) Apply Ahrens Lab filter
- Branson Lab (5) Apply Branson Lab filter
- Card Lab (1) Apply Card Lab filter
- Cardona Lab (1) Apply Cardona Lab filter
- Funke Lab (5) Apply Funke Lab filter
- Keller Lab (1) Apply Keller Lab filter
- Otopalik Lab (1) Apply Otopalik Lab filter
- Pachitariu Lab (1) Apply Pachitariu Lab filter
- Reiser Lab (3) Apply Reiser Lab filter
- Rubin Lab (1) Apply Rubin Lab filter
- Saalfeld Lab (3) Apply Saalfeld Lab filter
- Sternson Lab (1) Apply Sternson Lab filter
- Tebo Lab (1) Apply Tebo Lab filter
- Turaga Lab (48) Apply Turaga Lab filter
- Turner Lab (1) Apply Turner Lab filter
Publication Date
- 2025 (1) Apply 2025 filter
- 2024 (4) Apply 2024 filter
- 2023 (1) Apply 2023 filter
- 2022 (2) Apply 2022 filter
- 2021 (12) Apply 2021 filter
- 2020 (1) Apply 2020 filter
- 2019 (2) Apply 2019 filter
- 2018 (7) Apply 2018 filter
- 2017 (3) Apply 2017 filter
- 2016 (2) Apply 2016 filter
- 2015 (2) Apply 2015 filter
- 2014 (1) Apply 2014 filter
- 2013 (2) Apply 2013 filter
- 2011 (1) Apply 2011 filter
- 2010 (2) Apply 2010 filter
- 2009 (1) Apply 2009 filter
- 2007 (1) Apply 2007 filter
- 2006 (1) Apply 2006 filter
- 2004 (1) Apply 2004 filter
- 2003 (1) Apply 2003 filter
Type of Publication
48 Publications
Showing 1-10 of 48 resultsWhat can we learn from a connectome? We constructed a simplified model of the first two stages of the fly visual system, the lamina and medulla. The resulting hexagonal lattice convolutional network was trained using backpropagation through time to perform object tracking in natural scene videos. Networks initialized with weights from connectome reconstructions automatically discovered well-known orientation and direction selectivity properties in T4 neurons and their inputs, while networks initialized at random did not. Our work is the first demonstration, that knowledge of the connectome can enable in silico predictions of the functional properties of individual neurons in a circuit, leading to an understanding of circuit function from structure alone.
The field of connectomics has recently produced neuron wiring diagrams from relatively large brain regions from multiple animals. Most of these neural reconstructions were computed from isotropic (e.g., FIBSEM) or near isotropic (e.g., SBEM) data. In spite of the remarkable progress on algorithms in recent years, automatic dense reconstruction from anisotropic data remains a challenge for the connectomics community. One significant hurdle in the segmentation of anisotropic data is the difficulty in generating a suitable initial over-segmentation. In this study, we present a segmentation method for anisotropic EM data that agglomerates a 3D over-segmentation computed from the 3D affinity prediction. A 3D U-net is trained to predict 3D affinities by the MALIS approach. Experiments on multiple datasets demonstrates the strength and robustness of the proposed method for anisotropic EM segmentation.
The study of neural circuits requires the reconstruction of neurons and the identification of synaptic connections between them. To scale the reconstruction to the size of whole-brain datasets, semi-automatic methods are needed to solve those tasks. Here, we present an automatic method for synaptic partner identification in insect brains, which uses convolutional neural networks to identify post-synaptic sites and their pre-synaptic partners. The networks can be trained from human generated point annotations alone and requires only simple post-processing to obtain final predictions. We used our method to extract 244 million putative synaptic partners in the fifty-teravoxel full adult fly brain (FAFB) electron microscopy (EM) dataset and evaluated its accuracy on 146,643 synapses from 702 neurons with a total cable length of 312 mm in four different brain regions. The predicted synaptic connections can be used together with a neuron segmentation to infer a connectivity graph with high accuracy: 96% of edges between connected neurons are correctly classified as weakly connected (less than five synapses) and strongly connected (at least five synapses). Our synaptic partner predictions for the FAFB dataset are publicly available, together with a query library allowing automatic retrieval of up- and downstream neurons.
Brains encode behaviors using neurons amenable to systematic classification by gene expression. The contribution of molecular identity to neural coding is not understood because of the challenges involved with measuring neural dynamics and molecular information from the same cells. We developed CaRMA (calcium and RNA multiplexed activity) imaging based on recording in vivo single-neuron calcium dynamics followed by gene expression analysis. We simultaneously monitored activity in hundreds of neurons in mouse paraventricular hypothalamus (PVH). Combinations of cell-type marker genes had predictive power for neuronal responses across 11 behavioral states. The PVH uses combinatorial assemblies of molecularly defined neuron populations for grouped-ensemble coding of survival behaviors. The neuropeptide receptor neuropeptide Y receptor type 1 (Npy1r) amalgamated multiple cell types with similar responses. Our results show that molecularly defined neurons are important processing units for brain function.
We present an efficient Monte Carlo algorithm for simulating diffusion in tight-fitting host–guest systems, based on using zeolitenormal modes. Computational efficiency is gained by sampling framework distortions using normal-mode coordinates, and by exploiting the fact that zeolite distortion energies are well approximated by harmonic estimates. Additional savings are obtained by performing local normal-mode analysis, i.e., only including the motions of zeolite atoms close to the jumping molecule, hence focusing the calculation on zeolite distortions relevant to guest diffusion. We performed normal-mode analysis on various silicalite structures to demonstrate the accuracy of the harmonic approximation. We computed free energy surfaces for benzene in silicalite, finding excellent agreement with previous theoretical studies. Our method is found to be orders-of-magnitude faster than comparable Monte Carlo calculations that use conventional forcefields to quantify zeolite distortion energies. For tight-fitting guests, the efficiency of our new method allows flexible-lattice simulations to converge in less CPU time than that required for fixed-lattice simulations, because of the increased likelihood of jumping through a flexible lattice.
Multipath propagation in shallow water can lead to mismatch losses when single-path replicas are usedfor horizontal array beamforming.Matched field processing(MFP) seeks to remedy this by using full-fieldacoustic propagationmodels to predict the multipath arrival structure. Ideally MFP can give source localization in range and depth as well as detection gains but robustly estimating range and depth is difficult in practice. The approach described here seeks to collapse full-field replica outputs to bearing which is robustly estimated while retaining any signal gains provided by the full-field model.Clusteranalysis is used to group together full-field replicas with similar responses. This yields a less redundant “sampled field” describing a set of representative multipath structures for each bearing. A detection algorithm is introduced that uses clustering to collapse beamformer outputs to bearing such that signal gains are retained while increases in the noise floor are minimized. Horizontal array data from SWELLEX-96 are used to demonstrate the detection benefits of sampled field as compared to single-pathbeamforming.
In recent years, two-photon calcium imaging has become a standard tool to probe the function of neural circuits and to study computations in neuronal populations. However, the acquired signal is only an indirect measurement of neural activity due to the comparatively slow dynamics of fluorescent calcium indicators. Different algorithms for estimating spike rates from noisy calcium measurements have been proposed in the past, but it is an open question how far performance can be improved. Here, we report the results of the spikefinder challenge, launched to catalyze the development of new spike rate inference algorithms through crowd-sourcing. We present ten of the submitted algorithms which show improved performance compared to previously evaluated methods. Interestingly, the top-performing algorithms are based on a wide range of principles from deep neural networks to generative models, yet provide highly correlated estimates of the neural activity. The competition shows that benchmark challenges can drive algorithmic developments in neuroscience.
In recent years, two-photon calcium imaging has become a standard tool to probe the function of neural circuits and to study computations in neuronal populations. However, the acquired signal is only an indirect measurement of neural activity due to the comparatively slow dynamics of fluorescent calcium indicators. Different algorithms for estimating spike rates from noisy calcium measurements have been proposed in the past, but it is an open question how far performance can be improved. Here, we report the results of the spikefinder challenge, launched to catalyze the development of new spike rate inference algorithms through crowd-sourcing. We present ten of the submitted algorithms which show improved performance compared to previously evaluated methods. Interestingly, the top-performing algorithms are based on a wide range of principles from deep neural networks to generative models, yet provide highly correlated estimates of the neural activity. The competition shows that benchmark challenges can drive algorithmic developments in neuroscience.
Molecular profiles of neurons influence information processing, but bridging the gap between genes, circuits, and behavior has been very difficult. Furthermore, the behavioral state of an animal continuously changes across development and as a result of sensory experience. How behavioral state influences molecular cell state is poorly understood. Here we present a complete atlas of the Drosophila larval central nervous system composed of over 200,000 single cells across four developmental stages. We develop polyseq, a python package, to perform cell-type analyses. We use single-molecule RNA-FISH to validate our scRNAseq findings. To investigate how internal state affects cell state, we optogentically altered internal state with high-throughput behavior protocols designed to mimic wasp sting and over activation of the memory system. We found nervous system-wide and neuron-specific gene expression changes. This resource is valuable for developmental biology and neuroscience, and it advances our understanding of how genes, neurons, and circuits generate behavior.
The availability of both anatomical connectivity and brain-wide neural activity measurements in C. elegans make the worm a promising system for learning detailed, mechanistic models of an entire nervous system in a data-driven way. However, one faces several challenges when constructing such a model. We often do not have direct experimental access to important modeling details such as single-neuron dynamics and the signs and strengths of the synaptic connectivity. Further, neural activity can only be measured in a subset of neurons, often indirectly via calcium imaging, and significant trial-to-trial variability has been observed. To address these challenges, we introduce a connectome-constrained latent variable model (CC-LVM) of the unobserved voltage dynamics of the entire C. elegans nervous system and the observed calcium signals. We used the framework of variational autoencoders to fit parameters of the mechanistic simulation constituting the generative model of the LVM to calcium imaging observations. A variational approximate posterior distribution over latent voltage traces for all neurons is efficiently inferred using an inference network, and constrained by a prior distribution given by the biophysical simulation of neural dynamics. We applied this model to an experimental whole-brain dataset, and found that connectomic constraints enable our LVM to predict the activity of neurons whose activity were withheld significantly better than models unconstrained by a connectome. We explored models with different degrees of biophysical detail, and found that models with realistic conductance-based synapses provide markedly better predictions than current-based synapses for this system.