Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium

Note: Research in this publication was not performed at Janelia.
Abstract
We present an approach to solving computer vision problems in which the goal is to produce a high-dimensional, pixel-based interpretation of some aspect of the underlying structure of an image. Such tasks have traditionally been categorized as “low-level vision” problems, and examples include image denoising, boundary detection, and motion estimation. Our approach is characterized by two main elements, both of which represent a departure from previous work. The first is a focus on convolutional networks, a machine learning strategy that operates directly on an input image with no use of hand-designed features and employs many thousands of free parameters that are learned from data. Previous work in low-level vision has been largely focused on completely handdesigned algorithms or learning methods with a hand-designed feature space. We demonstrate that a learning approach with high model complexity, but zero prior knowledge about any specific image domain, can outperform existing techniques even in the challenging area of natural image processing. We also present results that establish how convolutional networks are closely related to Markov random fields (MRFs), a popular probabilistic approach to image analysis, but can in practice can achieve significantly greater model complexity. The second aspect of our approach is the use of domain specific cost functions and learning algorithms that reflect the structured nature of certain prediction problems in image analysis. In particular, we show how concepts from digital topology can be used in the context of boundary detection to both evaluate and optimize the high-order property of topological accuracy. We demonstrate that these techniques can significantly improve the machine learning approach and outperform state of the art boundary detection and segmentation methods. Throughout our work we maintain a special interest and focus on application of our methods to connectomics, an emerging scientific discipline that seeks highthroughput methods for recovering neural connectivity data from brains. This application requires solving low-level image analysis problems on a tera-voxel or peta-voxel scale, and therefore represents an extremely challenging and exciting arena for the development of computer vision methods.