Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium

Note: Research in this publication was not performed at Janelia.
Abstract
The Methoprene-tolerant (Met) gene in Drosophila melanogaster has been shown to function in juvenile hormone (JH) action. Met homologs were isolated from three mosquito species, Culex pipiens, Aedes aegypti and Anopheles gambiae. Sequence similarity was found to be high in bHLH and PAS conserved domains, and the majority of the 7-9 introns in AaMet and AgMet are located in either identical or similar positions, indicating evolutionary relatedness. Sequence comparison with Met and the similar germ-cell expressed (gce) gene in D. melanogaster showed that the mosquito genes are more similar to gce than to Met. Moreover, the multiple introns in AgMet and AaMet are more similar in number with the 7 introns in Dmgce than to the single intron in DmMet; in fact, six intron positions in AaMet and AgMet are similar to those in Dmgce. Efforts to identify a second homologous gene in mosquitoes were unsuccessful, suggesting a single gene in lower Diptera, consistent with the single gene uncovered in genomic sequencing of Ae. aegypti and An. gambiae. These results suggest that a gene duplication occurred during the evolution of higher Diptera, resulting in Met and gce.