Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Labs:
Project Teams:
Main Menu - Block
Labs:
Project Teams:
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
janelia7_blocks-janelia7_biblio_header | block
The Journal of Physical Chemistry. 2006 Sep 28;110:18744-7. doi: 10.1021/jp055038i
Atomic and molecular parity nonconservation and sum frequency generation solutions to the ozma problem.

Ji N, Harris RA
Note: Research in this publication was not performed at Janelia.
janelia7_blocks-janelia7_biblio_abstract | block
Abstract
Two Ozma problems are defined. Parity nonconservation is necessary for their solutions. Both problems may be solved by beta decay or atomic optical activity. Atomic and molecular sum frequency generation is chosen, as it supplies rich methods of effecting "gedanken" solutions to the Ozma problems. A new method of measuring a parameter manifesting molecular parity violations is advanced.
node:body | entity_field
janelia7_blocks-janelia7_biblio_tools | block