Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium

Note: Research in this publication was not performed at Janelia.
Abstract
Research into the neural mechanisms of place navigation in laboratory animals has led to the definition of allothetic and idiothetic navigation modes that can be examined by quantitative analysis of the generated tracks. In an attempt to use this approach in the study of human navigation behavior, 10 young subjects were examined in an enclosed arena (2.9 m in diameter, 3 m high) equipped with a computerized tracking system. Idiothetic navigation was studied in blindfolded subjects performing the following tasks-Simple Homing, Complex Homing and Idiothesis Supported by Floor-Related Signals. Allothetic navigation was examined in sighted subjects instructed to find in an empty arena the acoustically signaled unmarked goal region and later to retrieve its position using tasks (Natural Navigation, Cue-Controlled Navigation, Snapshot Memory, Map Reading) that evaluated different aspects of allothesis. The results indicate that allothetic navigation is more accurate than idiothetic, that the poor accuracy of idiothesis is due to angular rather than to distance errors, and that navigation performance is best when both allothetic and idiothetic modes contribute to the solution of the task. The proposed test battery may contribute to better understanding of the navigation disturbances accompanying various neurological disorders and to objective evaluation of the results of drug therapy and of rehabilitation procedures.