Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium

Note: Research in this publication was not performed at Janelia.
Abstract
We have initiated research to determine the genetic basis of a male wing polymorphism in the pea aphid Acyrthosiphon pisum (Hemiptera: Aphididae). Previous studies showed that this polymorphism is controlled by a single biallelic locus, which we name aphicarus (api), on the X chromosome. Our objectives were to confirm that api segregates as a polymorphism of a single gene on the X chromosome, and to obtain molecular markers flanking api that can be used as a starting point for high-resolution genetic and physical mapping of the target region, which will ultimately allow the cloning of api. We have established an F2 population segregating for api and have generated X-linked AFLP markers. The segregation pattern of api in the F2 population shows that the male wing polymorphism segregates as a polymorphism of a single gene, or set of closely linked genes on the X chromosome. Using a subset of 78 F2 males, we have constructed a linkage map of the chromosomal region encompassing api using seven AFLP markers. The map spans 74.1 cM and we have mapped api to an interval of 10 cM. In addition, we confirmed X linkage of our AFLP markers and api by using one X-linked marker developed in an earlier study. Our study presents the first mapping of a gene with known function in aphids, and the results indicate that target gene mapping in aphids is feasible.