Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium

Note: Research in this publication was not performed at Janelia.
Abstract
Soldier-producing aphids have evolved at least nine separate times. The larvae of soldier-producing species can be organized into three general categories: monomorphic larvae, dimorphic larvae with a reproductive soldier caste, and dimorphic larvae with a sterile soldier caste. Here we report the discovery of a novel soldier type in an undescribed species of Pseudoregma that is morphologically similar to P. bambucicola. A colony of this species produced morphologically monomorphic first-instar larvae with a defensive behavioral dimorphism. These larvae attacked natural predators, and larval response to a simple assay, placing the tips of forceps in front of larvae, was correlated with this attacking behavior. Approximately one third of the first-instar larvae in the colony attacked and this proportion was uncorrelated with the time of day, the ambient temperature, or the diel migratory behavior of the aphids. Migrating larvae rarely attacked. Attacking behavior was correlated with another defensive behavior, hind-leg waving. Attackers were more likely to possess the next-instar skin, suggesting that they were older than non-attackers. This is the first example of a possible within-instar age polyethism in soldier-producing aphids. Canonical variates analysis of seven morphological measurements failed to discriminate between attacking and non-attacking larvae. The monomorphic larvae share some morphometric characteristics in common with the soldiers of P. bambucicola and other characteristics in common with normal larvae. We discuss these results with respect to the evolution and loss of soldier castes in the tribe Cerataphidini.