Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium

Note: Research in this publication was not performed at Janelia.
Abstract
The hippocampus has been used extensively as a model to study plastic changes in the brain's neural circuitry. Immediately after high-frequency stimulation to hippocampal Schaffer collateral axons, a dramatic change occurs in the relationship between the presynaptic CA3 and the postsynaptic CA1 pyramidal neurons. For a fixed excitatory postsynaptic potential (EPSP), there arises an increased likelihood of action potential generation in the CA1 pyramidal neuron. This phenomenon is called EPSP-spike (E-S) potentiation. We explored E-S potentiation, using patch-clamp techniques in the hippocampal slice preparation. A specific protocol was developed to measure the action potential probability for a given synaptic strength, which allowed us to quantify the amount of E-S potentiation for a single neuron. E-S potentiation was greatest when gamma-aminobutyric acid (GABA)ergic inhibition was intact, suggesting that modulation of inhibition is a major aspect of E-S potentiation. Expression of E-S potentiation also correlated with a reduced action-potential threshold, which was greatest when GABAergic inhibition was intact. Conditioning stimuli produced a smaller threshold reduction when inhibition was blocked, but some reduction also occurred in the absence of a conditioning stimulus. Together, these results suggest that E-S potentiation is caused primarily through a reduction of GABAergic inhibition, leading to larger EPSPs and reduced action potential threshold. Our findings do not rule out, however, the possibility that modulation of voltage-gated conductances also contributes to E-S potentiation.