Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium

Note: Research in this publication was not performed at Janelia.
Abstract
Aquaporin-0 (AQP0), previously known as major intrinsic protein (MIP), is the only water pore protein expressed in lens fiber cells. AQP0 is highly specific to lens fiber cells and constitutes the most abundant intrinsic membrane protein in these cells. The protein is initially expressed as a full-length protein in young fiber cells in the lens cortex, but becomes increasingly cleaved in the lens core region. Reconstitution of AQP0 isolated from the core of sheep lenses containing a proportion of truncated protein, produced double-layered two-dimensional (2D) crystals, which displayed the same dimensions as the thin 11 nm lens fiber cell junctions, which are prominent in the lens core. In contrast reconstitution of full-length AQP0 isolated from the lens cortex reproducibly yielded single-layered 2D crystals. We present electron diffraction patterns and projection maps of both crystal types. We show that cleavage of the intracellular C terminus enhances the adhesive properties of the extracellular surface of AQP0, indicating a conformational change in the molecule. This change of function of AQP0 from a water pore in the cortex to an adhesion molecule in the lens core constitutes another manifestation of the gene sharing concept originally proposed on the basis of the dual function of crystallins.